Structures de Poisson sur les Coisotropes 1-Décalés

Yassine Ait Mohamed

Université de Sherbrooke

Travail en collaboration avec Maxence Mayrand

Introduction : Quantification par déformation

Introduction : Quantification par déformation

Structures géométriques de base

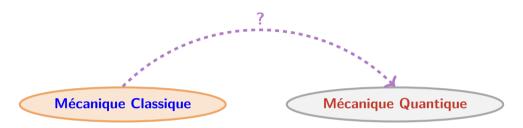
- Introduction : Quantification par déformation
- Structures géométriques de base
- Résultats récents sur structures de Poisson sur les 1-coisotropes décalées

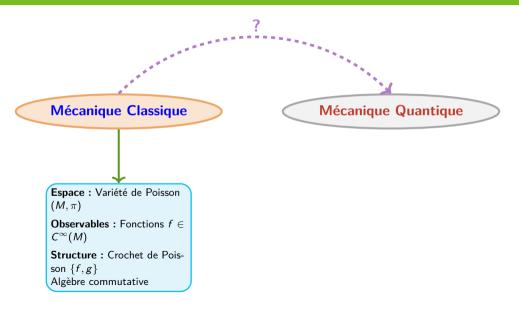
- Introduction : Quantification par déformation
- Structures géométriques de base
- Résultats récents sur structures de Poisson sur les 1-coisotropes décalées
- Perspectives : Structures P_{∞}

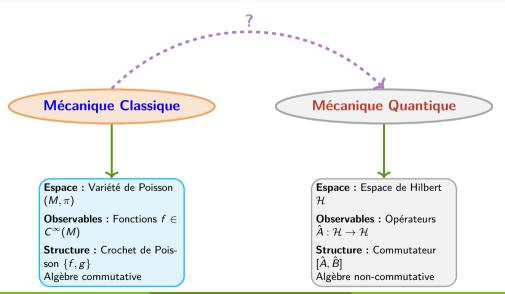
Mécanique Classique

Mécanique Classique

Mécanique Quantique







Comment quantifier?

Comment quantifier?

Approche Mathématique

Correspondance:

 $Q: C^{\infty}(M) \to \mathsf{Op}(\mathcal{H})$

avec propriétés algébriques

Comment quantifier?

Approche Mathématique

Correspondance:

 $Q: C^{\infty}(M) \to \operatorname{Op}(\mathcal{H})$

avec propriétés algébriques

Approche Physique

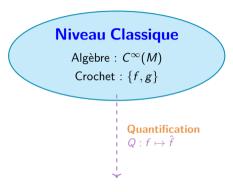
Passage :

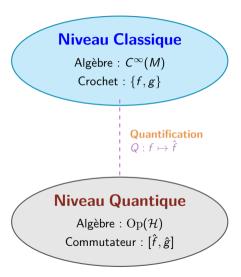
Classique (déterministe)

Quantique (probabiliste)

Niveau Classique

Algèbre : $C^{\infty}(M)$ Crochet : $\{f,g\}$





Algèbre : $C^{\infty}(M)$

Crochet : $\{f,g\}$

Quantification

 $Q:f\mapsto \hat{f}$

Conditions:

(i)
$$Q(1) = \operatorname{Id}_{\mathcal{H}}$$

(ii) [Q(f), Q(g)]= $i\hbar Q(\{f, g\})$

Niveau Quantique

 $\mathsf{Alg\`ebre}: \mathrm{Op}(\mathcal{H})$

Commutateur : $[\hat{f}, \hat{g}]$

1978

Bayen, Flato, Fronsdal, Lichnerowicz, Sternheimer

Deformation theory and quantization

1978

Bayen, Flato, Fronsdal, Lichnerowicz, Sternheimer

Deformation theory and quantization

Problème

Existence de * sur variété de Poisson

1978 Flato Fronsd

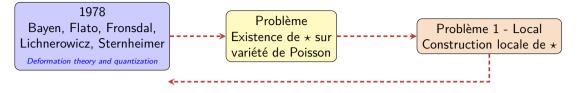
Bayen, Flato, Fronsdal, Lichnerowicz, Sternheimer

Deformation theory and quantization

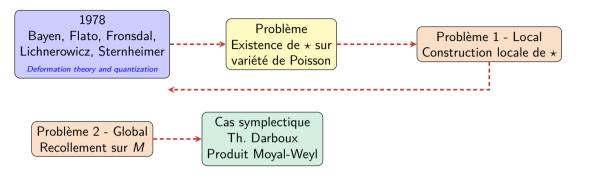
Problème

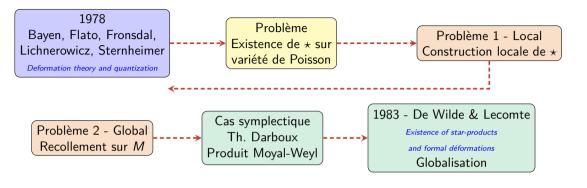
Existence de * sur variété de Poisson

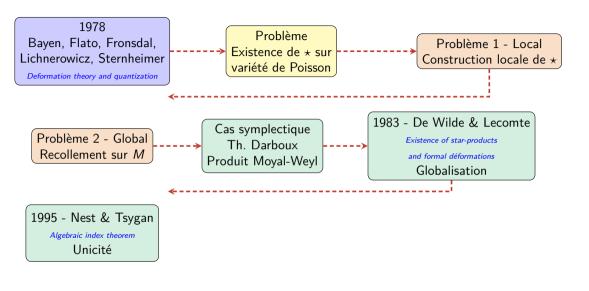
Problème 1 - Local Construction locale de *

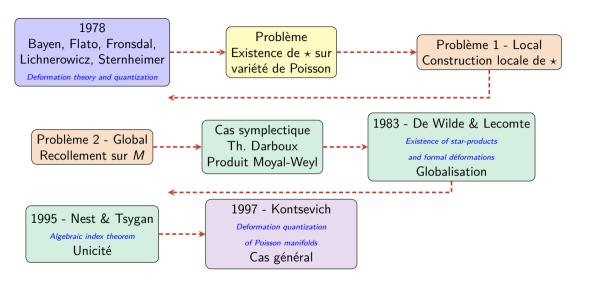


Problème 2 - Global Recollement sur *M*





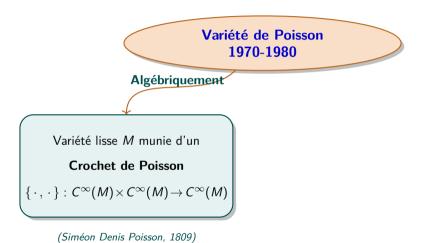




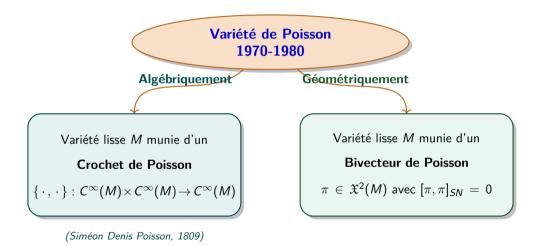
Variété de Poisson : deux points de vue

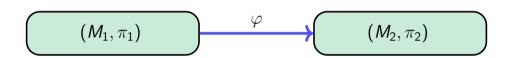
Variété de Poisson 1970-1980

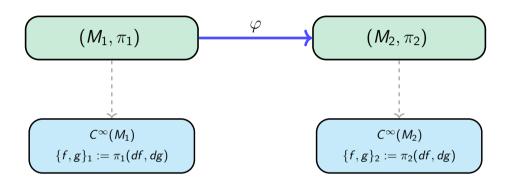
Variété de Poisson : deux points de vue

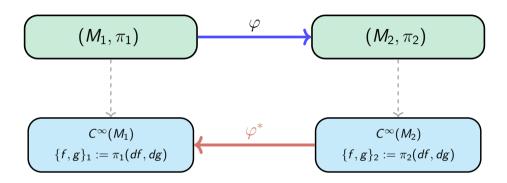


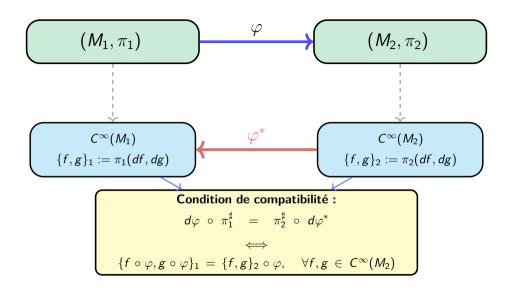
Variété de Poisson : deux points de vue











Sous-variété coisotrope

(1988 - A. Weinstein)

Sous-variété coisotrope

(1988 - A. Weinstein)

approche algébrique

Idéal
$$I_C \subset C^{\infty}(M)$$
 tel que

$$\{I_C, I_C\} \subset I_C$$
, où

$$I_C := \{ f \in C^{\infty}(M) : f_{|C} = 0 \}$$

Sous-variété coisotrope

(1988 - A. Weinstein)

approche algébrique

Idéal $I_C \subset C^\infty(M)$ tel que

$$\{I_C, I_C\} \subset I_C$$
, où

$$I_C := \{ f \in C^{\infty}(M) : f_{|C} = 0 \}$$

approche géométrique

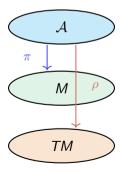
Sous-variété $C \subset M$ telle que

$$\pi^{\sharp}(N^*C) \subset TC$$

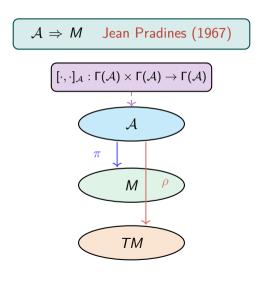
où
$$N^*C := (TC)^0 \subset T^*M|_C$$

Algébroïde de Lie

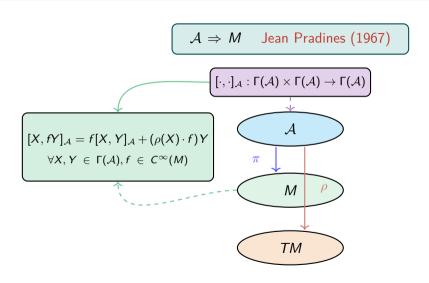
 $\mathcal{A} \Rightarrow M$ Jean Pradines (1967)



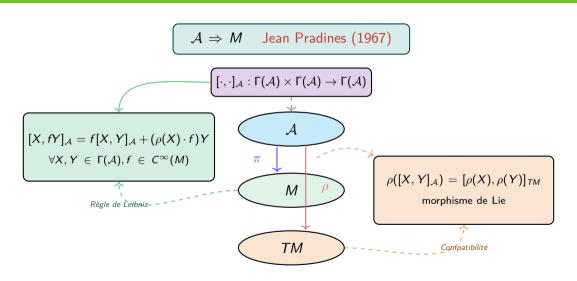
Algébroïde de Lie



Algébroïde de Lie



Algébroïde de Lie



 $\mathcal{G}
ightrightarrows M$ Charles Ehresmann (1959)

$$\mathcal{G}
ightrightarrows M$$
 Charles Ehresmann (1959)

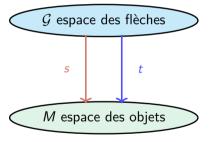
 ${\cal G}$ espace des flèches

 $\mathcal{G}
ightrightarrows M$ Charles Ehresmann (1959)

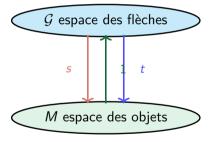
 ${\mathcal G}$ espace des flèches

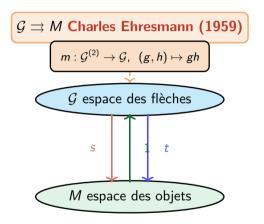
M espace des objets

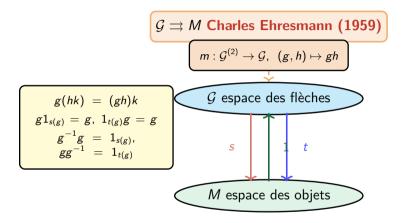
$$\mathcal{G}
ightrightarrows M$$
 Charles Ehresmann (1959)

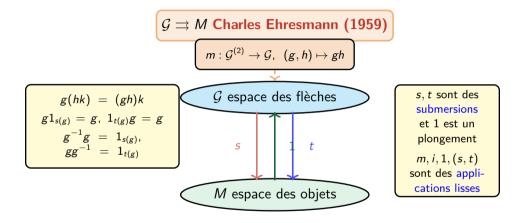


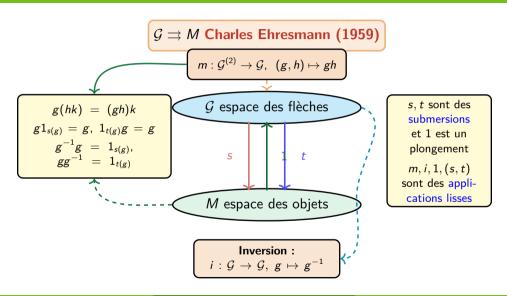
 $\mathcal{G}
ightrightarrows M$ Charles Ehresmann (1959)

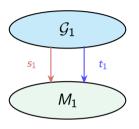


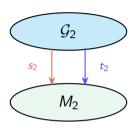


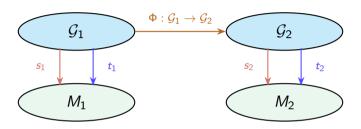


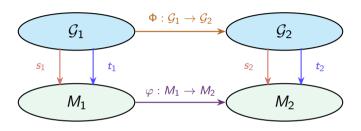


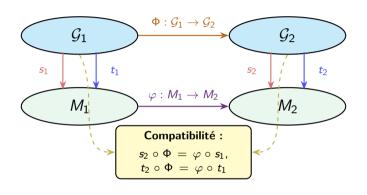


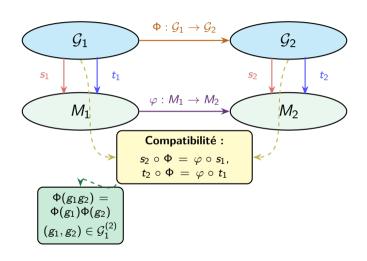


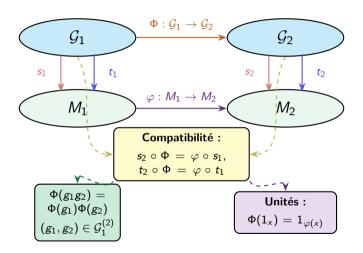










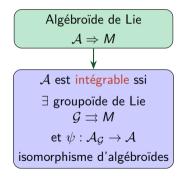


Algébroïde de Lie

 $A \Rightarrow M$

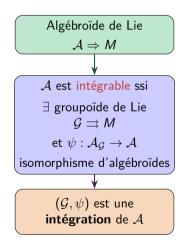
Attention

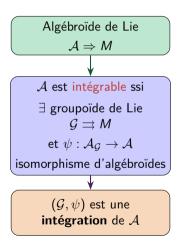
Il existe des algébroïdes de Lie qui ne sont pas intégrables. Crainic & Fernandes Integrability of Lie brackets
Ann. of Math. (2003)



Attention

Il existe des algébroïdes de Lie qui ne sont **pas intégrables**. **Crainic & Fernandes** *Integrability of Lie brackets*Ann. of Math. (2003)



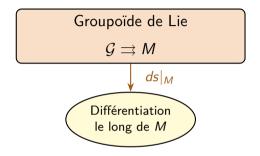


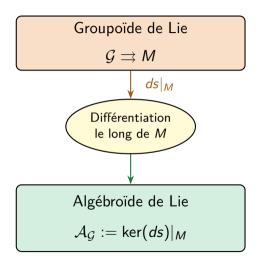
Attention

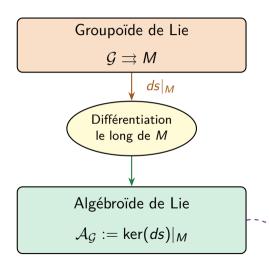
Il existe des algébroïdes de Lie qui ne sont pas intégrables. Crainic & Fernandes Integrability of Lie brackets
Ann. of Math. (2003)

Groupoïde de Lie

 $\mathcal{G} \rightrightarrows M$





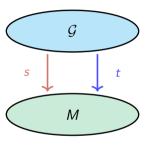


- Fibré : $A_G \rightarrow M$
- ullet Ancrage : $ho:=dt|_{A_{\mathcal{G}}}$
- Crochet : $[\cdot, \cdot]$ défini par identification des sections de $\mathcal{A}_{\mathcal{G}}$ avec les champs de vecteurs sur \mathcal{G} tangents aux s-fibres et invariants à droite i.e,

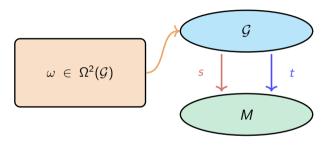
$$dR_h(X_g) = X_{hg}$$

où
$$R_h: s^{-1}(t(h)) \rightarrow s^{-1}(s(h)), g \mapsto hg$$

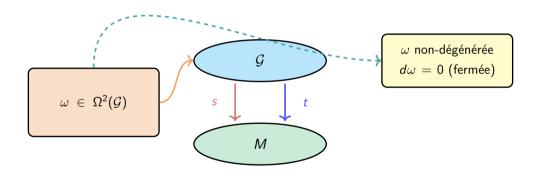
Groupoïde symplectique $(\mathcal{G} \xrightarrow{\Longrightarrow M, \omega)}$



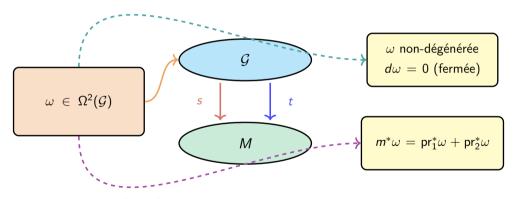
Groupoïde symplectique $(\mathcal{G} \xrightarrow{\Longrightarrow M, \omega)}$



Groupoïde symplectique $(\mathcal{G} \rightrightarrows M, \omega)$

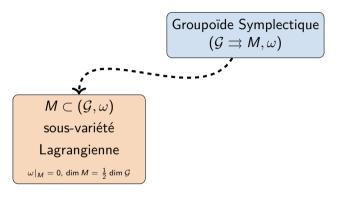


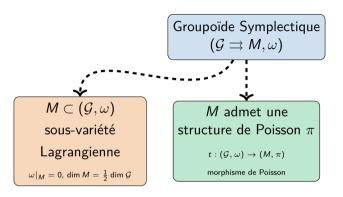
Groupoïde symplectique $(\mathcal{G} \rightrightarrows M, \omega)$

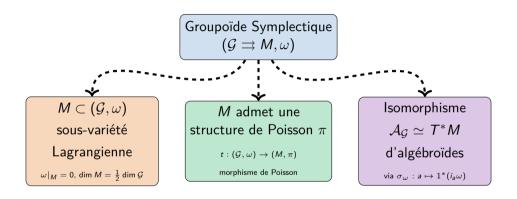


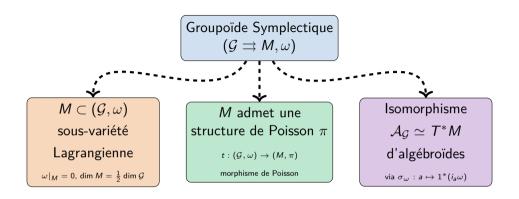
Weinstein (1987) Symplectic groupoids and Poisson manifolds

Groupoïde Symplectique $(\mathcal{G}
ightrightarrows M, \omega)$





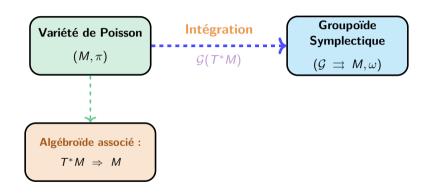


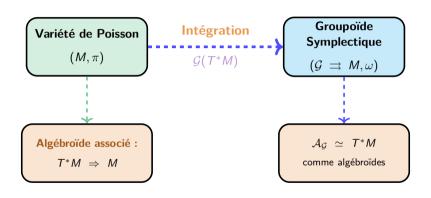


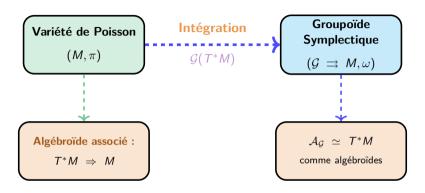
 T^*M est **intégrable** comme algébroïde de Lie et \mathcal{G} est son intégration symplectique

Intégration des Variétés de Poisson

Variété de Poisson (M,π)

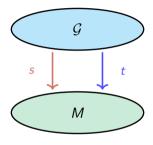




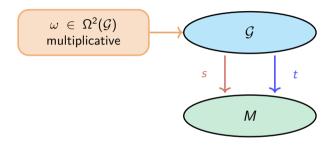


Théorème (Kirill C. H. Mackenzie, Ping Xu)

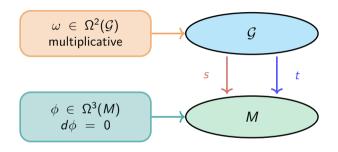
Toute variété de Poisson (M, π) intégrable admet un groupoïde symplectique s-simplement connexe unique



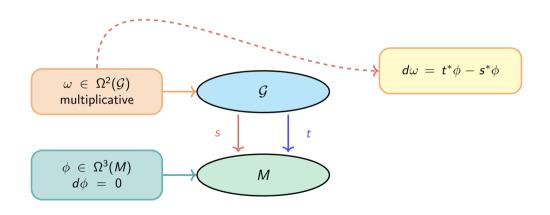
Ping Xu – Momentum maps and Morita equivalence (2004)



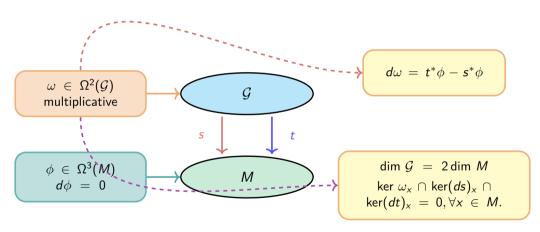
Ping Xu – Momentum maps and Morita equivalence (2004)



Ping Xu – Momentum maps and Morita equivalence (2004)

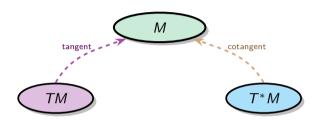


Ping Xu – Momentum maps and Morita equivalence (2004)

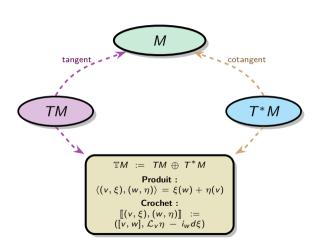


Ping Xu – Momentum maps and Morita equivalence (2004)

Structure de Dirac sur une Variété

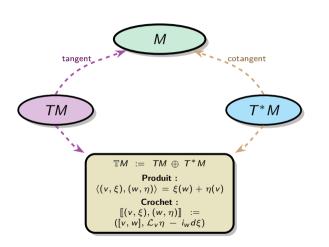


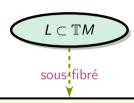
Structure de Dirac sur une Variété



sous-fibré

Structure de Dirac sur une Variété





Structure de Dirac :

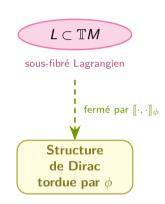
L sous-fibré vérifiant :

- Maximalement isotrope :
 dim L = dim M
 L = L[⊥] pour
- $\langle \cdot, \cdot \rangle$ (L est dit un sous fibré Lagrangain)
- Involutif :
 Γ(L) fermé par
 le crochet de Courant

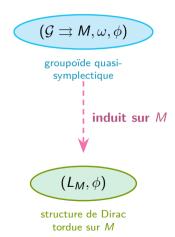
Structure de Dirac Tordue

Crochet tordu par $\phi \in \Omega^3(M)$

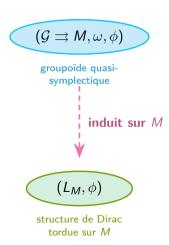
$$[\![(\mathbf{v},\xi),(\mathbf{w},\eta)]\!]_{\phi}:=([\mathbf{v},\mathbf{w}],\mathcal{L}_{\mathbf{v}}\eta-i_{\mathbf{w}}d\xi+i_{\mathbf{w}}i_{\mathbf{v}}\phi)$$



Structure de Dirac Tordue Induite



Structure de Dirac Tordue Induite



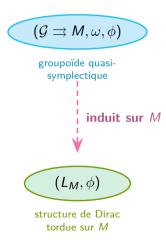
Structure induite

$$L_M \subset \mathbb{T}M = TM \oplus T^*M$$

$$L_{\mathcal{M}}:=\mathsf{im}(
ho_{\mathcal{G}},\sigma_{\omega})$$

$$=\{(
ho_{\mathcal{G}}(\mathsf{a}),\sigma_{\omega}(\mathsf{a}))\mid \mathsf{a}\in \mathsf{A}_{\mathcal{G}}\}$$

Structure de Dirac Tordue Induite



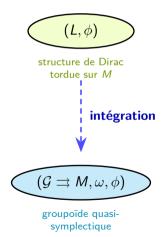
Structure induite

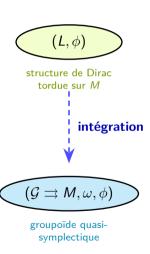
$$L_M \subset \mathbb{T}M = TM \oplus T^*M$$

$$L_M := \operatorname{im}(
ho_{\mathcal{G}}, \sigma_{\omega})$$

$$=\{(\rho_{\mathcal{G}}(\mathsf{a}),\sigma_{\omega}(\mathsf{a}))\mid \mathsf{a}\in A_{\mathcal{G}}\}$$

[Henrique Bursztyn et al. Théorème 2.2 Integration of Twisted Dirac Brackets]

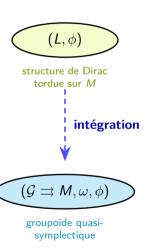




Construction

Donnée : (L, ϕ)

Étapes :

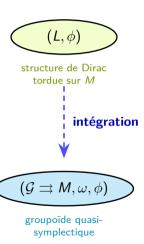


Construction

Donnée : (L, ϕ)

Étapes:

① Intégrer l'algébroïde de Lie $A = \operatorname{pr}_{TM}(L)$ en groupoïde $\mathcal{G} \rightrightarrows M$

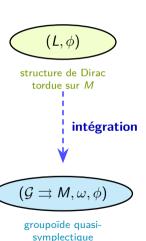


Construction

Donnée : (L, ϕ)

Étapes :

- ① Intégrer l'algébroïde de Lie $A = \operatorname{pr}_{TM}(L)$ en groupoïde $\mathcal{G} \rightrightarrows M$
- **②** Construire $\omega \in \Omega^2(\mathcal{G})$ multiplicative telle que :
 - $d\omega = s^*\phi t^*\phi$
 - $L = \operatorname{im}(\rho_{\mathcal{G}}, \sigma_{\omega})$



Construction

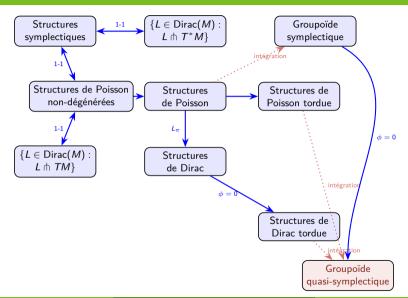
Donnée : (L, ϕ)

Étapes :

- ① Intégrer l'algébroïde de Lie $A = \operatorname{pr}_{TM}(L)$ en groupoïde $\mathcal{G} \rightrightarrows M$
- **②** Construire $\omega \in \Omega^2(\mathcal{G})$ multiplicative telle que :
 - $d\omega = s^*\phi t^*\phi$
 - $L = \operatorname{im}(\rho_{\mathcal{G}}, \sigma_{\omega})$

[Henrique Bursztyn et al. Théorème 2.4 Integration of Twisted Dirac Brackets]

Relations entre les structures

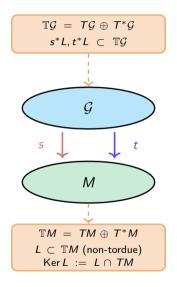


Structure de Poisson sur

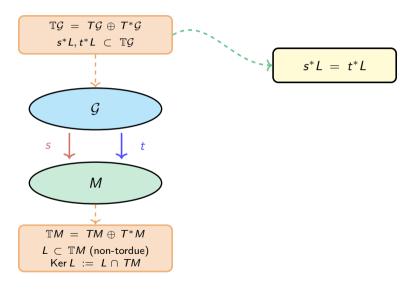
$$(\mathcal{G} \Rightarrow M, L)$$

0-shifted Poisson structure

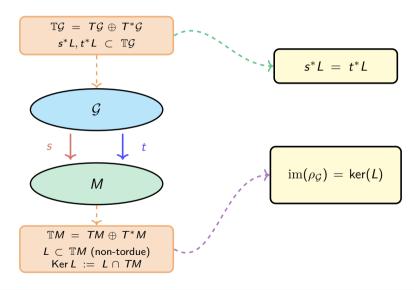
Structure de Poisson sur $(\mathcal{G} \rightrightarrows M, L)$



Structure de Poisson sur $(\mathcal{G} \rightrightarrows \overline{M}, L)$



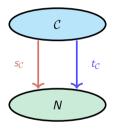
Structure de Poisson sur $(\mathcal{G} \rightrightarrows M, L)$

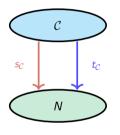


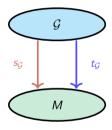
Structure de Poisson sur 1-coisotrope décalé

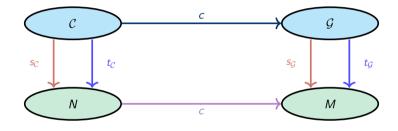
$$c : (\mathcal{C} \Rightarrow N, L, \eta) \rightarrow (\mathcal{G} \Rightarrow M, \omega, \Phi)$$

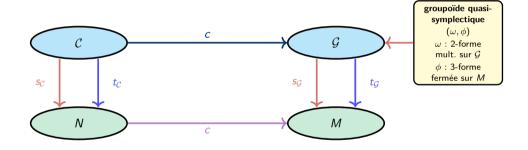
Structure de Poisson sur $c: (\mathcal{C} \rightrightarrows N, L, \eta) \rightarrow (\mathcal{G} \rightrightarrows M, \omega, \phi)$

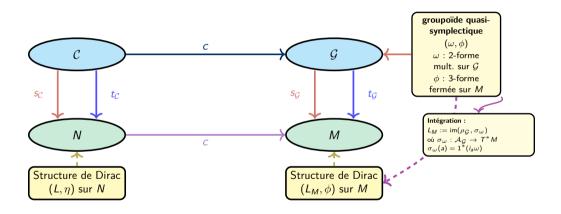


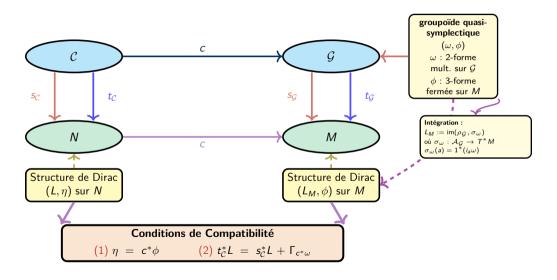










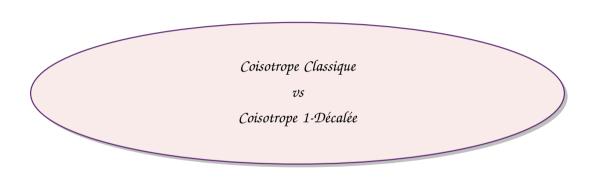


$$(\rho_{\mathcal{C}}, c^*\sigma_{\omega}c_*, c_*) : A_{\mathcal{C}} \longrightarrow L \times_{c} A_{\mathcal{G}}$$

est surjective, où

$$L \times_{c} A_{\mathcal{G}} := \{ ((v, \alpha), a) \in L \oplus c^{*}A_{\mathcal{G}} \mid c_{*}v = \rho a, \ \alpha = c^{*}\sigma_{\omega}a \}.$$

$$\sigma_{\omega}$$
 : $\mathcal{A}_{\mathcal{G}}$ $ightarrow$ $\mathcal{T}^{*}\mathcal{M}, \sigma_{\omega}$ \mathcal{A} := $1^{*}(i_{a}\omega)$



Groupoïde symplectique $(\mathcal{G} \rightrightarrows M, \omega)$ intégrant (M, π) Sous-variété coisotrope $\mathcal{C} \subset M$

Groupoïde symplectique $(\mathcal{G}
ightharpoonup M, \omega)$ intégrant (M,π) Sous-variété coisotrope $\mathcal{C} \subset M$

Niveau Algébroïde

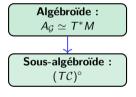
Niveau Groupoïde

Algébroïde :

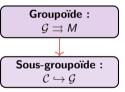
 $A_{\mathcal{G}} \simeq T^*M$

Groupoïde symplectique $(\mathcal{G}
ightharpoonup M, \omega)$ intégrant (M, π) Sous-variété coisotrope $\mathcal{C} \subset M$

Niveau Algébroïde

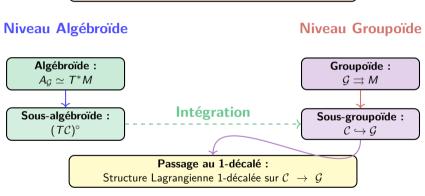


Niveau Groupoïde



Groupoïde symplectique $(\mathcal{G}
ightharpoonup M, \omega)$ intégrant (M, π) Sous-variété coisotrope $\mathcal{C} \subset M$

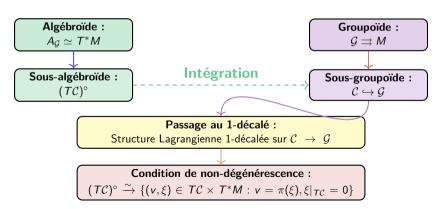
Groupoïde symplectique $(\mathcal{G} \rightrightarrows M, \omega)$ intégrant (M, π) Sous-variété coisotrope $\mathcal{C} \subset M$



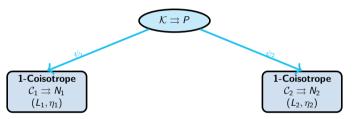
Groupoïde symplectique $(\mathcal{G}
ightharpoonup M, \omega)$ intégrant (M, π) Sous-variété coisotrope $\mathcal{C} \subset M$

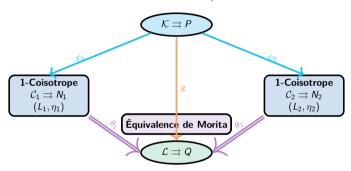
Niveau Algébroïde

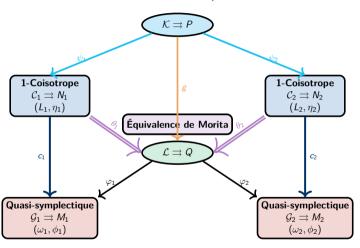
Niveau Groupoïde

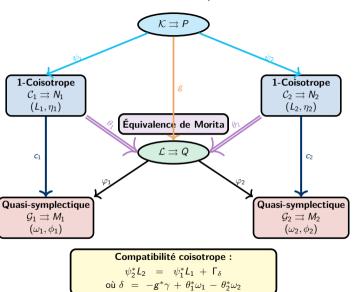


L'Équivalence de Morita entre 1-Coisotropes Décalées Induit-elle un Isomorphisme d'Algèbres de Poisson?











 P_{∞} -ALGÈBRE

P_{∞} -ALGÈBRE

Algèbre graduée commutative

$$A = \bigoplus_{n \in \mathbb{Z}} A^n \operatorname{sur} k$$

$$P_{\infty}$$
-ALGÈBRE

Algèbre graduée commutative

$$A = \bigoplus_{n \in \mathbb{Z}} A^n \operatorname{sur} k$$

Opérations: $\lambda_n : A^{\otimes n} \to A$ degré : deg $(\lambda_n) = 2 - n$

P_{∞} -ALGÈBRE

Algèbre graduée commutative

$$A = \bigoplus_{n \in \mathbb{Z}} A^n \operatorname{sur} k$$

Opérations: $\lambda_n : A^{\otimes n} \to A$ degré : deg $(\lambda_n) = 2 - n$

(I) Antisymétrie

$$egin{aligned} \lambda_n(\ldots,a_i,a_{i+1},\ldots) \ &= -(-1)^{|a_i||a_{i+1}|} \ \lambda_n(\ldots,a_{i+1},a_i,\ldots) \end{aligned}$$

P_{∞} -ALGÈBRE

Algèbre graduée commutative

$$A = \bigoplus_{n \in \mathbb{Z}} A^n \operatorname{sur} k$$

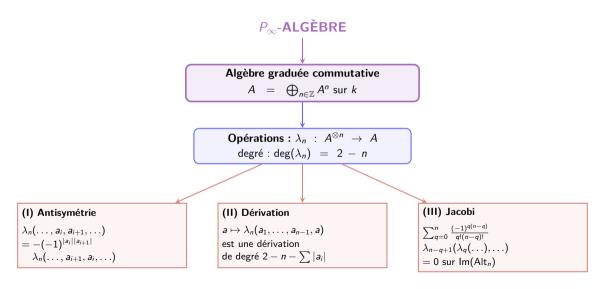
Opérations: $\lambda_n : A^{\otimes n} \to A$ degré : deg $(\lambda_n) = 2 - n$

(I) Antisymétrie

$$\lambda_n(\ldots,a_i,a_{i+1},\ldots) = -(-1)^{|a_i||a_{i+1}|} \lambda_n(\ldots,a_{i+1},a_i,\ldots)$$

(II) Dérivation

$$a \mapsto \lambda_n(a_1, \dots, a_{n-1}, a)$$
 est une dérivation de degré $2 - n - \sum_i |a_i|$



Construction de Cattaneo-Felder

$$\cdots \longrightarrow \Gamma(C, \wedge^{j}NC) \xrightarrow{\delta} \Gamma(C, \wedge^{j+1}NC) \longrightarrow \cdots$$

Différentielle δ :

Degré $\mathbf{0}:\delta f=\pi^\sharp(d\tilde{f})\ \mathrm{mod}\ TC\ \delta$ est

déterminé sur le complexe par

$$\delta(\alpha \wedge \beta) = \delta\alpha \wedge \beta + (-1)^{|\alpha|}\alpha \wedge \delta\beta$$

Cohomologie $H_{\pi}(N^*C) := \bigoplus_k H_{\pi}^k(N^*C)$: Propriétés :

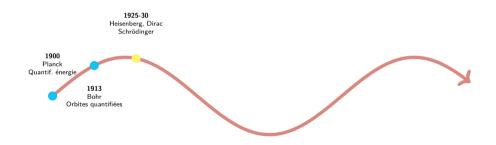
- Algèbre graduée commutative
- $\bullet \ H_{\pi}^{0}(N^{*}C) = C^{\infty}(\underline{C})$

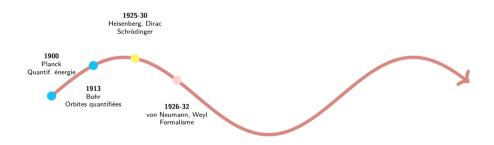
Problème : Comment quantifier $H_\pi(N^*C)$ (ou au moins $H_\pi^0(N^*C) = C^\infty(\underline{C})$)? ($\underline{C} =$ espace réduit, possiblement singulier) Trouver un produit star sur $H_\pi(N^*C)[\![\varepsilon]\!]$ déformant le produit commutatif gradué et tel que $\frac{1}{\varepsilon}(a\star b-(-1)^{|a||b|}b\star a)$ soit le crochet de Poisson modulo ε .

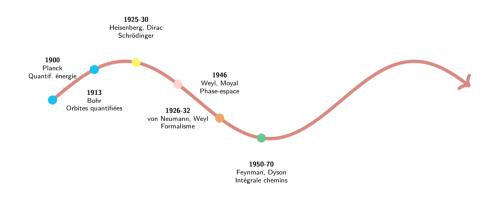
Problème : Comment quantifier $H_{\pi}(N^*C)$ (ou au moins $H_{\pi}^0(N^*C) = C^{\infty}(\underline{C})$)? ($\underline{C} =$ espace réduit, possiblement singulier) Trouver un produit star sur $H_{\pi}(N^*C)[\![\varepsilon]\!]$ déformant le produit commutatif gradué et tel que $\frac{1}{\varepsilon}(a\star b-(-1)^{|a||b|}b\star a)$ soit le crochet de Poisson modulo ε .

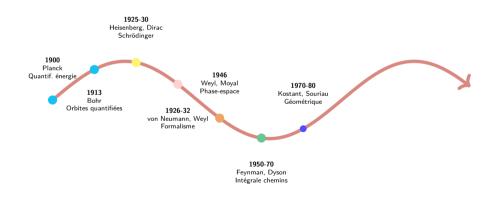
Idée clé : Quantifier le P_{∞} -algèbre $\Gamma(C, \wedge NC)$ (cohomologie de l'algébroïde de Lie)

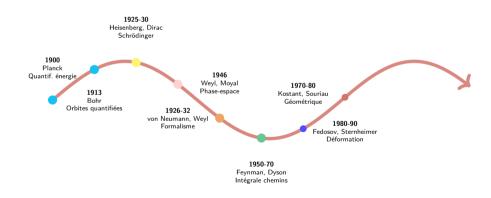
Problème : Comment quantifier $H_{\pi}(N^*C)$ (ou au moins $H_{\pi}^0(N^*C) = C^{\infty}(C)$)? $(\underline{C} = \text{espace réduit, possiblement singulier})$ Idée clé : Quantifier le Trouver un produit star sur $H_{\pi}(N^*C)[\![\varepsilon]\!]$ P_{∞} -algèbre $\Gamma(C, \wedge NC)$ déformant le produit commutatif gra-(cohomologie de l'algébroïde de Lie) dué et tel que $\frac{1}{a}(a \star b - (-1)^{|a||b|}b \star a)$ soit le crochet de Poisson modulo e Théorème de formalité relative : Structure A_{∞} sur $\Gamma(C, \wedge NC)[\varepsilon]$ (quantification par déformation)

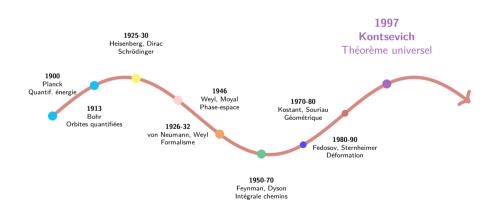


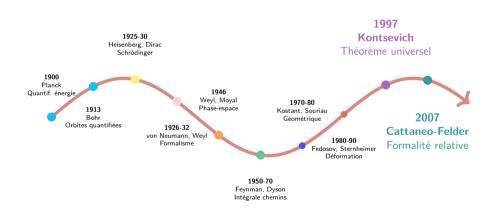


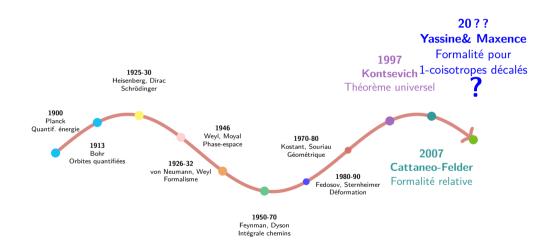












Merci pour votre attention