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Introduction

The purpose of the present work is to present how algebraic varieties offer a bridge
connecting different areas in mathematics. Especially, we are interested here in making
clear how ideas (and even more, theories) are converted from an algebraic (resp., number
field) aspect to a purely geometric one. We also, indicate -sometimes-how reverse feedbacks
are gained from the introduction of geometric language in the study of specific topics in al-
gebra and number field theories.

This thesis is written -mostly- in a self contained manner and is designated to intro-
duce a non-specialist reader in algebraic geometry to this mathematical world. For this end,
we present in this manuscript many necessary backgrounds from various algebraic and geo-
metric areas, and we give -as possible- detailed proofs for the results contained here.

Roughly speaking, the introduction of algebraic varieties in mathematics can be con-
sidered as an attempt to combine tools, objects and arguments from algebra (at first commu-
tative algebra) and some corresponding topological spaces defined in a manner shaped to fit
with what existed in differential manifold theory. As will be seen in more details through-
out the first chapter, classical affine varieties are defined by means of polynomial functions
with coefficients in a base field preferably taken to be algebraically closed. Precisely, they
are the vanishing locus of families of polynomials in a finite Cartesian product of this base
field. Some authors -as we will do in this work- prefer to add the extra condition that they are
‘irreducible’” with respect to Zariski topology. Taking (coordinates) algebras of these (affine)
varieties, allows then to establish a nice correspondence with finitely generated domains
over the base field. This in fact generalizes to give an equivalence of categories between the
category of ‘non necessary irreducible’ affine varieties and the category of ‘reduced’ finitely
generated algebras over this field. As in differential geometry, projective varieties are de-
fined similarly by means of homogeneous polynomials, and special open covers of them are
given by affine varieties, making it possible to lift properties from the affine case to the pro-
jective one.

The importance of the above equivalence of categories arises from the fact that for
(some) algebraic objects, we can benefit from all topological and geometric properties of the
corresponding varieties. In this sense, many purely geometric notions are connected to some
algebraic ones, e.g., in the affine case, the dimension of a variety (i.e., the topological di-
mension of its underlying space) coincides with the (Krull) dimension of the corresponding
affine coordinate algebra.

In contrast with differential setting, algebraic varieties are not Hausdorff in general,
and so an algebraic group for example -defined in the same manner as Lie group in differ-
ential geometry- is not a topological group. Nevertheless, a separation notion does exist for
algebraic varieties and any morphism of affine schemes turns to be separated. Moreover, the
idea of working locally on a variety, especially using germs of regular functions, is a main
idea that remains valid in this algebraic context. Besides, many notions inspired from dif-
ferential manifolds like closed and open immersions are very helpful in the study of these
algebraic varieties. We have also a notion of (algebraic) tangent space which allows benefit-
ing from connections with Lie theory when dealing for example with algebraic groups.

In modern algebraic geometry, the use of sheaf theory made it possible to work on a
general commutative base ring (not only on a base field) and affine varieties, as will be ex-
plained in the second chapter, are defined by means of the spectrum of the considered ring.
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For non affine varieties like projective ones, scheme theory developed essentially in Alexan-
der’s pioneer work and that of his collaborators, made it possible to generalize arbitrary
varieties to the context of (commutative) rings. The idea of schemes consists in some gluing
of spectra of many (commutative) rings along open subsets. This theory heavily relies on cat-
egory language and the landscape appears very difficult without sufficient understanding of
classical varieties. Schemes theory at its earlier beginning served to settle many important
conjectures like Weil conjectures and Mordell conjecture. It becomes today an important
component in many mathematical areas and continues to intervene in solving many hard
problems. Indeed, many algebraic results still continue to have only geometric proofs.

As in algebraic topology and also in differential geometry, a notion of (algebraic) vector bun-
dles was defined and used to build Grothendieck groups (of varieties). More generally, all
K-theory groups are defined by using these algebraic bundles in the same model as for com-
mutative rings. Indeed, in the language of modules over schemes -see the second chapter-
and up to an equivalence of categories, algebraic vector bundles are exactly coherent mod-
ules over (Noetherian) schemes. Also, when dealing with an affine scheme, they correspond
categorically - under some canonical equivalence- to finitely generated projective modules
over the base ring. Besides this approach relating schemes to K-groups, many properties of
schemes can be described by using adequate cohomological complexes.

In this manuscript we give two applications of algebraic geometry showing the above
said interplay between algebra, number field theory and varieties. The first one concerns
the notion of divisors in algebraic geometry and the second one deals with Severi-Brauer
varieties.

The notion of divisors for varieties is part of intersection theory in algebraic geometry.
It can be considered as an extension of the well known Kronecker’s divisors in algebraic
number field theory. Historically, it is known that Kronecker’s divisors were built on a sim-
ple but fascinating idea which consists in determining greatest common divisors inside the
polynomial algebra (in one indeterminate) over the rational field. The main tool used for this
end was an easy notion of the “‘content’ of a polynomial which is the greatest common divisor
of its coefficients in the case of a polynomial with integer coefficients. Indeed, at that time
such simple notions were often the starting point of flourishing theories. Hermann Weyl
developed then an axiomatization of divisors built on the same principal of Dedekind’s ele-
gant ‘ideal theory’ to give information on prime factorizations. A divisor became then some
well defined ideal and a multiplicative group was then derived from nonzero divisors. This
group was then related to other groups defined in Dedekind’s theory. Moreover, besides
working over a rational field, divisors were extended to be defined over more base fields,
e.g.,, number fields. The study of divisors benefited from several algebraic and number field
tools, e.g., Diddekind’s discriminants, Picard group.., but a great raise was due to the use of
valuation theory, where divisors took another aspect based on the notion of “places’, which
are closed to valuation rings. Plainly, Dedekind’s and valuation approaches had opened new
perspectives in the study of divisors; nevertheless, it is worthy to mention that the ancient
(and almost forgotten) theory of ‘contents’ preserves some advantages when compared with
these new approaches (e.g., it is independent of the considered base field which is not the
case for Dedekind’s approach).

The use of valuation language in the study of divisors, allowed for algebraic number
fields at first - then for varieties - developing Riemann-Roch theory which is now widely
applied in different areas of mathematics, especially in coding theory and cryptography.

Divisors in algebraic geometry were first defined on (classical) curves, since (special)
discrete valuations exist on the function field of such a curve and local rings of nonsingular
curve’s points are regular. The theory was then extended to codimension one varieties in
schemes theory and gave rise to Chow groups, where a general intersection theory was built
from algebraic cycles. A (Weil) divisor is then a cycle of codimension one. Unfortunately, we



did not deal in this manuscript with this more general (intersection) theory for it would need
more special background. Let’s finally mention that divisors have close connection with vec-
tor bundles. Indeed, there is a one-to-one correspondence between equivalence classes of
(Weil) divisors and isomorphism classes of (algebraic) line bundles.

The other example illustrating the usefulness of varieties that we treat in this manuscript
concerns Severi-Brauer varieties which are widely applied in studying central simple alge-
bras. They appeared in Francois Chatelet’s paper [7] but historically it is announced that
they appeared before and are due in part to Severi (see [2]). As will be explained in the third
chapter, to every central simple algebra, one can attach a corresponding Severi-Brauer vari-
ety and this last one encodes information on splitting fields of such algebra. Indeed, Amitsur
used in [1] the function field of this attached variety and defined a generic splitting field for
the considered algebra. Since then, Severi-Brauer varieties became very useful in the study
of Brauer groups, groups that classify central simple algebras over some fixed fields.

Throughout different discussions in this manuscript, we don’t pretend originality, and we
refer the reader to a list of references at the end.

In an attempt to achieve our described aim in this work, we organize the content of this
manuscript as follows.

In the first chapter, which consists of two parts, we introduce in the first part the neces-
sary background of (classical) affine and projective varieties. In particular, we define Zariski
topology for such varieties. We define regular functions, morphisms and rational maps of
varieties. We describe how a coordinate ring is associated to an affine variety and how equiv-
alence of categories relate both sides. We show how a projective variety is covered by affine
opens. We prove that the dimension of an affine variety coincides with the (Krull) dimension
of its corresponding coordinate algebra. We define tangent spaces and study some elemen-
tary properties of nonsingular points. Also, we define the notion of normal varieties and
show that a nonsingular variety is necessarily normal. In the second part of this chapter, we
introduce divisors in terms of places and study some of their properties on (classical) curves.
We give in particular a detailed survey on Riemann-Roch theory on these curves.

The second chapter, consisting of three parts deals with the theory of schemes. The first
part lays out the basic definitions and properties of sheaf theory. The second one discusses
schemes, morphisms between schemes, fiber products and dimension of schemes. It deals
also with local and global properties of schemes. This includes the notions of Noetherian,
irreducible, reduced, integral, regular, normal, separated, proper, projective schemes. We
also study modules over schemes. The third part deals with cohomological interpretations
in scheme theory and introduce Weil and Cartier divisors (defined now in terms of schemes).
For a full treatment of sheaves, schemes, Weil divisors and Cartier divisors, we refer to [9],
[17] and [12].

The third chapter consists of two parts. In the first one, we give a brief survey on simple
and semisimple modules, on central simple algebras and prove in particular fundamental
theorems like Wedderburn’s theorem, the double centralizer theorem and Skolem-Noether
theorem. We show how to build and we study Brauer group of a field and show how crossed
products relate this group to a second Galois cohomology group. For more details on cen-
tral simple algebras, we refer to [15], [10] and [21]. The second part, concerns Severi-Brauer
varieties and discusses some of their properties and the interplay between these varieties,
central simple algebras and some cohomological interpretations.
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Notation and terminology

var (k)
Ox
T X
Dery(k[X])
RE(X,Y)
T Ak
VY, Hom(V,k)
Rp
Div(E)

a field

The (commutative) k-algebra of polynomials in n indeterminates with coefficients in k.
The affine space of dimension n over k.

The projective space of dimension n over k

The ring of integers, rational numbers, real numbers, complex numbers.
a commutative ring with identity element.

Unique factorization domain.

Principal ideal domain.

Discrete valuation ring.

The set of common zeros of the polynomials in S.

The ideal of a set X.

The coordinate ring of an algebraic set.

The set of all reqular functions on a variety X (the ring of regular functions on X)
The category of varieties over k.

The local ring of X at x, also called the ring of germs of reqular functions at x.
The tangent space to an algebraic set X at x.

The set of derivations of k[X] at x.

The set of all rational functions from X to'Y.

The category of spaces of functions over k.

The dual space of V.

localization at p.

The group of divisors of a function field E/k.

The Riemann-Roch Space.

dimi(L(D)).

The set of all adeles of E / k.

The set of all places P of E/k.

The category of topological spaces.

(pre)sheaf on a topological space.

Sheafification of presheaf F.

The stalk of a presheaf F at a point x.

The category of abelian sheaves.

The category of presheaves on the topological space X.
The pushforward of F.

The pullback sheaf.

a category.

The set of all prime ideals of R.

The category of ringed spaces.

The category of sheaves on X.

The category of schemes.

The category of affine schemes.

The Structure Sheaf on Spec(R).

The category of quasi-coherent Ox-modules.

The category of coherent Ox-modules.

The set for all submodules of M.
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Notation and terminology

Cadiv(X) The group of Cartier divisors.
Cadivy (X) The set of effective Cartier divisors.
CaCl(X) := CaDiv(X)/ ~  Cartier divisors class group.
Div(X) The group of Weil divisors.
Div°(X) The principal divisors.
Cl(X) := Div(X)/Div®(X) Weil class group of X
CSA(F) The class of all central simple algebras over F.
Br(F) The Brauer group of F.
Br(E/F) The relative Brauer group of the field extension E D F.
G := Gal(E/F) The Galois group of E/F.
(E,G,a) The crossed product algebra over F determined by E and a.
A= (E/F,o,pB) The cyclic algebra over F determined by E and B.
AbGrp The category of abelian groups
H(G, M) The zeroth cohomology set of G with coefficients in M.
HY(G, M) The first cohomology set of G with coefficients in M.
Azl The set of all isomorphy classes of central simple algebras
A of dimension n® over F.
AzE/F The set of all isomorphy classes of central simple algebras
A which are of dimension n? over F and split over E.
BSk The set of all isomorphy classes of Severi-Brauer varieties
X of dimension m over F.
BSE/E The set of all isomorphy classes of Severi-Brauer varieties

X of dimension m over F.



Chapter 1

Introduction to the Geometry of Affine and
Projective Spaces

In Algebraic Geometry, we study geometric objects - varieties - that are defined by polynomial equations.
One fascinating aspect of this is that we can do geometry over arbitrary fields, however we can gain a
lot of geometric intuition from looking at algebraically closed fields k. The theory developed here is often
described as the commutative part of algebraic geometry for it relies heavily on concepts and results from
commutative algebra. In particular, unless otherwise mentioned, all considered algebras in this chapter
-as well as in the second one- are assumed to be commutative. More details about the content of this
chapter were given in the general introduction of this manuscript and we see no interest to repeat this
description here.

1.1 Affine and projective varieties

In this section, we will define the basic objects of our study : Algebraic sets in affine space of dimension
an arbitrary integer n A" = k. We define also affine and projective varieties and give some of their first
properties.
Throughout the rest, we let k[Ty, ..., T,] denote the (commutative) k-algebra of polynomials in n in-
determinates Ty, ..., T,, with coefficients in k. A polynomial f € k[Ty,..., T, defines a function
f: A" — k, given by (ay,...,ay) — f(ay,...,an). The k-valued functions on A" form a k-
algebra via pointwise addition and multiplication.
The map

¢: k[Ty,...,Ta] —> {functions, A" — k}

f — f

is a k-algebra homomorphism.

1.1.1 Affine varieties

As seen aboven the affine space of dimension n over k is simply the set k". It will be denoted by A}
or simply by A". The elements (also called points) A" are then n-uples (a4, ...,a,), where a; € k for
i =1,...,n. Algebraic sets in the affine space are defined by means of subsets S C k[T, ..., T,|. For
such a subset, we let by (S) be the ideal of k|[Ty, ..., Ty] generated by S.

*A field k is algebraically closed if every non-constant polynomial (on one indeterminate and with coefficients in k) has a
root in k. It follows that every polynomial of degree n can be uniquely factorized (up to permutation of the factors) as

P = Cﬁ(x - ai)
i=1

where ¢ and the a; are elements of k.



Definition 1.1.1 Let S C k[Ty, ..., T,,] be any subset. The set

Z(S):={(aq,...,an) € A" | f(ay,...,an) =0, forallf(Ty,...,Ty) €S}
is called the algebraic set (of A") defined by S.

Remarks 1.1.1 i) It is not hard to see that if the set of polynomials is larger, the set of common zeros
is smaller, i.e.,

SCS = 2Z(S)cCZ(OS)

it) If I is the ideal generated by the polynomials in S, then we have Z(I1) = Z(S). So algebraic sets
can be defined Z(I) for ideals I C k[Ty, ..., T,]. Recall that all ideals in k[Ty, ..., T,] are finitely
generated by the Hilbert Basis Theorem.

Examples 1.1.1 1) Affine n-space itself is an algebraic set, since A™ = Z(0). Similarly, the empty
set @ = Z(1) is an algebraic set.

2) Any single point in A" is an algebraic set. Indeed, we have {(ay,...,an)} = Z(Thy —ay, ..., Tn —
ay).

3) The special linear group, SL(n, k) which is the set of all matrices A = (a;j)1<i j<n With entries in
k and such that det(A) = 1, can be viewed as a subset of A" by the correspondence

(al-]-) — (an,...,aln,...,a21,...,azn,...,anl,...,ann)

This is an algebraic set because the determinant of a matrix is a polynomial function of the matrix-
elements, so that SL(n, k) is the set of zeros of the polynomial, det(A) — 1 for A € A"

Here are some basic properties of algebraic sets and the ideals that generate them :
Proposition 1.1.1 Let I, ] be ideals of k[T, ..., T,]. Then
1) 1 C Jimplies Z(]) C Z(1).
2) Z(I]) =Z(IN]) = Z(I)U Z(]).
3) Z(L i) =NZ(L).
Proof. 1) Fora € Z(]), we have f(a) =0, forall f € |, so in particular forall f € 1. Soa € Z(I).

2) Plainly, we have I] C INJ C I,],s0 Z(IN]) C Z(I) U Z(]). For the reserve inclusions, let
a ¢ Z(I)UZ(]), then there exists f € I and g € ] such that f(a) # 0and g(a) # 0. Then

fg(a) #0,s0a ¢ Z(I]).

3) For all j, we have I; C Y 1 then Z(YI;) € Z(I;), hence Z(}Y_ I;) € NZ(I;). Conversely, for
a € NZ(1;), we have a € Z(I;), for all i. For each f € Y_1I;, we can write f = Y _ fx, where
fx€lk=1,...,r.So, f(a) = Y;_ fr(a) =0, thereforea € Z(}_I;)

It follows that the algebraic sets in A" satisfy the axioms of the closed sets in a topology.

Definition 1.1.2 The Zariski topology on A" is the topology for which the closed sets are algebraic sets
of A"

Notation. For a subset X C A", define I(X) := {f € k[Ty,..., Tu] | f(x) = 0,Vx € X}. The set
[(X) is an ideal in k[Ty, ..., T,].



Example 1.1.1 Leta = (ay,...,a,) € A" be a point, then the ideal of the one-point set {a} is I(a) :=
[{a})=(T1 —ay,..., Ty —ay).

We have now constructed operations

{Algebraic sets in A"} <— {ideals ink[Th, ..., Ta)}
X — I1(X)
Z(J) — J

and should check whether they actually give a bijective correspondence between ideals of k[T, ..., Ty]
and algebraic sets.

Lemma 1.1.1 Let S and S be a subsets of k[Ty, ..., T,] and let X and X be a subsets of A"
i) IfX C X then I(X') C I(X).
i) X CZ(I(X))and S C I(Z(S)).
iii) The Zariski closure of X is exactly Z(1(X)). So, if X is an algebraic set, then Z(I1(X)) = X.
iv) (XUX')=I1(X)nI(X).
Proof. i) Clear.
ii) Clear.

iii) By ii), we have X C Z(I(X)) and so X C Z(I1(X)). Conversely, let W C A" be an algebraic
set containing X and write W = Z(S) for some S C k [Ty, ..., Ty]. Then, again by ii), we have
SCI(Z(S)) =1(W) CI(X)andso Z(1(X)) C Z(S) = W, as required.

iv) We have X,X C XUX, so by i) we get [XUX) C I(X)NI(X). Conversely for f €
[(X) N I(X"), we have f(x) =0, forallx € XUX . So f € [(XUX).

By this lemma, the only thing left that would be needed for a bijective correspondence between ideals of
k[T, ..., Ty] and algebraic sets A" would be I(Z(])) C ] for any ideal ] (so that then I(Z(])) = ] by
part ii). Unfortunately, the following example shows that why this is not true in general.

Example 1.1.2 Let | be a nonzero ideal C[X]. As C[X] is a principal ideal domain and C is algebraically
closed, we have

J=((X—=0bp)" - (X—=bn)™)

for some n € IN, distinct elements by,...,b, € C, and my,...,m, € IN. Obviously, the zero locus of
this ideal in A" is Z(]) = {by,..., by} . The polynomials vanishing on this set are precisely those that
contain each factor X — b; fori =1,...,n at least once, i. e. we have

I(Z(])) = (X =b1) -+ (X = bn)) # J.
If at least one of the numbers my, . .., m,, is greater than 1, this is a bigger ideal than J.

In what follows we will see that a bijective correspondence does however exist between algebraic sets in
A" and some special ideals (radical ideals) of k[Ty, . .., Ty).

Definition 1.1.3 Let R be a commutative ring and let ] C R be an ideal. Then the set of a € R with the
property that a™ € | for some m > 0 is an ideal of R, called the radical of | and denoted rad(]). We say
that | is a radical ideal if rad(]) = J.

We say that the ring R is reduced if the zero ideal (0) is a radical ideal (in other words, if a € R with
that a™ = 0, for some positive integer m, then a = 0).



Lemma 1.1.2 If A and B are integral domains, with B integral over A, then B is a field if and only if A
is a field.

Proof. Let b € B be a nonzero element. Since B is an integral over A, then we can write
V" 4, 0" 4+ap=0 (1.1)

with m € IN a nonzero natural integer, a; € A (1 < i < m). Moreover, Since A is integral domain, we
can suppose that ag # 0.
Suppose that A is a field, then ag has an inverse in A. By (1.1), we have :

ag = —("+au_ "+ +arb)
— (" v a, b2+ 4 ap)b

1= —aal ("1 +a,, 1b™"2 + ... + ay)b, which shows that b is a unit of B. Conversely, suppose B is
afieldand r € A. Then v~ € B and we can write r :

r M 4a, D 4 4 =0
for some positive integer n and some elements a; € A. If we multiply this equality by 1", we get
r 4 a, 4. 4agr"=0.
Hencer ' = —(a,_1+ ... +agr" 1) € A.

Theorem 1.1.1 Let A be a finitely generated algebra over k. If A is a field, then A is an algebraic
extension of k.

Proof. See [6, Lemma 9.1.2, p.454].

Corollary 1.1.1 (Hilbert’s Nullstellensatz) (weak form). Let k be an algebraically closed field. The
maximal ideals of k [Ty, . .., Ty] are precisely the ideals

Iay,...,a0) = (T1—ay, T —ay,..., Ty —ay)

for all points (ay,...,a,) € A"

Proof. Let m be a maximal ideal of k[Ty,..., T, and A := M Plainly, obvious that A is a
finitely generated algebra over k (generated by the elements T; + m of A); moreover by theorem 1.1.1, A
is an algebraic field extension of k. Since k is algebraically closed, embedding ¢ : k — A(= W)
a — a + m is an isomorphism (of fields). In particular there exists a; € k such that T; +m = ¢(a;)
(forall 1 < i < n). This means that T; — a; € wm, so the ideal (Ty — ay, ..., T, — ay) is contained in m.
Conwversely, for any f € m considering f as a polynomial in Ty and taking the Euclidean division of f by
Ty —ay, weget f = f1(Ty, ..., Ty)(Ty —ay) +1(To,..., Ty), where f1(Th,...,Tn),7(To, ..., Ty) €
k[Ty,..., Ty), withdeg r(Ty, ..., Ty) = 0i.e., Ty not appearing in r(Ty, ..., Ty)

Once again, taking the Euclidean division of r(To, ..., Tn) by Ty — ap, we get

f = fl(T1/~ . -;Tn)(Tl — Lll) —|—f2(T2,. . .,Tn)(Tz — 612) —|—1’3(T3 .. .,Tn)
Continuing in this way, we get
f - fl(Tl,. . .,Tn)(Tl - al) + “ e +fn(Tn)(Tn - an) +a.

We have T; — a; € m, so necessarily a = 0 (for a € m and m is a maximal ideal of k[Ty, ..., Ty)).
Therefore f € (Ty —ay,..., Ty —an). Som = (Ty —ay,To —ap, ..., Ty — ay).
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Corollary 1.1.2 Let k be k an algebraically closed field. For every proper ideal | in k [Ty, ..., Ty,], there
is a point x € Z(]J).

Proof. Let | be a properideal ink [Ty, ..., T,] ] and let m be a maximal ideal of k[Ty, . .., Ty] containing
J. By corollary 1.1.1, we can write m = (Ty —ay,..., T, —ay). As ] € m, we may conclude that

(a1,...,an) € Z(J).

Theorem 1.1.2 (Hilbert’s Nullstellensatz). Let k be an algebraically closed field. Then for every ideal |
of K[Ty,..., Tu] we have I(Z(])) = rad(])

Proof. Let f € rad(]), then there is some positive integer n such that f" € |, so f" vanishes on
Z(]), hence f vanishes on it too. Thus, I(Z(])) D rad(]). For the reverse inclusion, let’s introduce
a new auxiliary indeterminate is to introduce a new auxiliary variable T, 1. Let’s also consider some
g € I(Z(])) and let L be the ideal of the polynomial ring k [Ty, ..., Ty41] given by

L:]'k[Tl,...,Tn+1]—|—t(1—Tn+1~g)

In geometric terms the zero-locus Z(L) C A" is the intersection of the the subset Z = Z(1 —
Tui1,8) and the inverse image =Y (Z(])) of Z(]) under the projection 7t : A"*1 — A" that forgets
the auxiliary coordinate T, 1. This intersection is empty since obviously g does not vanish along Z,
but vanishes identically on w='(Z(])). The corollary 1.1.1 therefore gives that 1 € L, and there are
polynomials f; in | and h;and h in k[Ty, ..., Ty41] satisfying a relation like

m
1=Y fi(T,..., To) hi (Ta,..., Ty1) +h (1 = Tyyq - )
i-1

We substitute T, 1 = é and multiply through by a sufficiently high power ¢~ of g to obtain

sV =Y f(Ty,....,Tu) Hi(Ty,..., Tn)
where H; (Ty, ..., T,) = g~ ;i (Th, ..., T, g ') . Hence g € rad(]).
Hilbert's Nullstellensatz" precisely describes the correspondence between algebra and geometry :

Corollary 1.1.3 Let k be an algebraically closed field.

i) The map | — Z(]) defines a one-to-one correspondence between the set of radical ideals in
k[T, ..., Ty] and the set of algebraic subsets of A". Its inverse is given by X +— I(X), for any
algebraic set in A" i.e

algebraic sets I radical ideals in
{ in A" }Z{ K[Ty,..., T, } (12)

ii) There is a one-to-one correspondence

{ points of A"} <— { maximal ideals of k[Ty, ..., Ty]}
p —> my

where my = (Ty — p1,..., Ty — pn).

YHilbert’s Nullstellensatz is a theorem that establishes a fundamental relationship between geometry and algebra. This
relationship is the basis of algebraic geometry, a branch of mathematics. It connects algebraic sets to ideals in polynomial
rings on algebraically closed fields. This relation was discovered by David Hilbert who proved the Nullstellensatz and several
other important related theorems named after him (such as Hilbert’s basic theorems).



Proof. i) This follows from the fact that 1(Z(])) = J and Z(1(X)) = X, for every radical ideal ] of
k[T, ..., T,] and every algebraic set X in A".

ii) Let | be a maximal ideal of k[Ty, ..., Tul, then by corollary 1.1.1 there exists ay, ...,a, € k such
that | = (Ty —ay, ..., Ty — an) = my, hence | = my, where p = (ay, ..., an).
Then prove that p —— my, is a surjective map from A" onto the set of maximal ideals of k[T1, ..., Ty].
This map is also injective, indeed let py and py € A", and suppose my, = my,, then Z(my,) =
Z(my, ), but we have Z(myp,) = {p;} (1 <i < n. So, p1 = pa.

Corollary 1.1.4 The radical of an ideal of k [T1, . .., Ty] is equal to the intersection of the maximal ideals
containing it.

Remark 1.1.1 The radical of an ideal is the intersections of all prime ideals that contain it (see corollary
1.1.4). The statement given here is true in the above context, where the basic field is algebraically closed.

Proof. Let a | C k[Ty,..., Ty| be an ideal. Because maximal ideals are radical, every maximal ideal
containing | also contains rad(J), so

rad(]) C [ m

m>DJ

Foreach P = (ay,...,a,) € k",mp = (T} —aq,..., Ty, — ay) is a maximal ideal in k[T, ..., T,] and
femps f(P)=0

SO
mp D J < PeZ(])

If f empforall P € Z(]), then f vanishes on Z(J]),so f € I(Z(])) = rad(]). It follows that

rad(]) 2 ﬂ mp.
PeZ(])
The coordinate ring of an algebraic set

The (affine) coordinate ring is one of the central concepts of algebraic geometry, particularly the theory
of affine algebraic sets. It is the ring of algebraic functions on an algebraic set.

Definition 1.1.4 Let X C A" be an algebraic set. The quotient ring
k[X]:=k[Ty,..., Ta] /I(X)

is called the affine coordinate ring of X. It is a finitely generated algebra over k.

Two polynomials f and g on the indeterminates Ty, ..., T, restrict to the same function on X precisely
when their difference f — ¢ belongs to the ideal 1(X). Hence it is natural to interpret elements in k[X]
as being polynomial functions from X into k, i.e., k-valued functions on X that are restrictions of a
polynomials.

Example 1.1.3 Let X C A2 be the hyperbola defined by XY — 1 = 0, so the coordinate ring is
K[X, Y]/ (XY —1) = k[X,X71].

the ring of so-called Laurent polynomials.



If X is an algebraic set of A" and if Y is an algebraic set contained in X, then as previously seen,
we have 1(X) C I(Y). Conversely if 1(Y) contains 1(X), then Y(= Z(I(Y)) C (Z(I(X) =)X.
Moreover, in such a case, 1(Y)/1(X) is a radical ideal of k| X]. It follows that there is a one-to-one
correspondence between radical ideals in the coordinate ring k[X| and algebraic subsets contained in
X. If a is an ideal in k[X], we denote by Z(a) the corresponding closed subset of X, i.e., Z(a) :=
Z(¢p~(a)), where ¢ : k[Ty,...,T,] — k[X] is the canonical epimorphism. Also, for a subset Y of X,
we let Ix(Y) = I(Y)/I(X)(€ k[X]). In particular, for a point a = (ay,...,a,) € X, we let to be
Ix(a). Note that if f, g are polynomials of k[Ty, ..., Ty] with f + 1(X) = ¢+ [(X) in k[X], then for
any x € X, we have f(x) = g(x), so f + I(X) defines a k-valued function on X. One can then see that
Zx(Y) = {f +1(X) € k(x| | f(y) = 0forall y € Y}.

Proposition 1.1.2 The coordinate ring, k[X] of an algebraic set X, has the following properties :
1) The points of X are in a one-to-one correspondence with the maximal ideals of k[X].
2) The closed sets of X are in a one-to-one correspondence with the radical ideals of k[X].

3) If f € k[X] and p € X with corresponding maximal ideal my, then k[X]/m,, is isomorphic (as a
field to k) and under this identification we have f(p) = m(f), where 1t : k[X] — k[X]/my, is the
canonical epimorphism.

For the proof of the previous proposition we need some lemmas.
Lemma 1.1.3 Let R be a ring and let I of R be an ideal and let
p:R—R/I

Then p induces a one-to-one correspondence between ideals of R/ 1 and ideals | of R that contain I
addition, for any ideal I of R and any ideal K of R/ I,

a) p(I) is prime or maximal in R/ I if and only if I is prime or maximal in R.
b) p~Y(K) is prime or maximal in R if and only if K is prime or maximal in R/ I.
Proof. See [26, Lemma A.1.24, p.335].

We will also need to know the effect of multiple quotients :
Lemma 1.1.4 Let I C | be ideals of a ring R and let
i) f:R—R/I
ii) g: R— R/]Jand
iii) h: R/1 — (R/I)/f(]) be the canonical projections. Then (R/I)/f(J) = R/ ] and the diagram

R f R/I
R/] » (R/T)/f(])

commautes.

Proof. See [26, Lemma A.1.25, p.337].



Proof. Let X C A" be an algebraic set. If
k[T, .., Ty — k[X]
is the canonical projection, and | C k[X] is an ideal, then lemma 1.1.3 implies that

] (])

is a bijection from the set of ideals of k[X] onto the set of ideals of k [Ty, . .., T, containing 1(X). Prime,
and maximal ideals in k[X] correspond to prime, and maximal ideals in k [Ty, . .., T,,| containing 1(X).
The fact that radical ideals are intersections of maximal ideals (see corollary 1.1.4) implies that this
correspondence respects radical ideals too. If p = (ay,...,a,) € X C A" is a point, the maximal ideal
of functions in k [Ty, ..., T,| that vanish at p is

L= (Tl—ﬂl,...,Tn—Eln) Ck[Tl,...,Tn]

and this gives rise to the maximal ideal 7t(L) C k[X].
Clearly
Z(m () =Z() < X

So ]| — Z(]) is a bijection between the set of radical ideals in k[X| and the algebraic sets contained X.
To see that f(p) = 7t(f), it suffices to apply lemma 1.1.4.

Irreducible topological spaces

The algebraic set X = {xy = 0} C A? can be written as the union of the two coordinate axes X; =
{x =0} and X, = {y = 0}, which are themselves algebraic sets. However, X1 and X, cannot be
decomposed further into finite unions of smaller algebraic sets. We now want to generalize this idea. It
turns out that this can be done completely in the language of topological spaces. This has the advantage
that it applies to more general cases, i.e., open subsets of algebraic sets.

Definition 1.1.5 i) Topological space X is said to be reducible if it can be written as a union X =
X1 U Xy , where Xy and X, are (nonempty) closed subsets of X not equal to X. It is called irre-
ducible otherwise. A subset Y of X is irreducible if it is an irreducible topological space with respect
to the induced topology.

ii) A topological space X is called disconnected if it can be written as a disjoint union X = X; U Xp
of (nonempty) closed subsets of X not equal to X. It is called connected otherwise.

Remark 1.1.2 Note that a Hausdoroff topological space is always reducible unless it consists of at most
one point. Thus the notion of irreducibility is relevant only for non-Hausdoroff spaces. Also one should
compare it with the notion of a connected space.

Proposition 1.1.3 Let X be a topological space. Then :
1) X is irreducible if and only if the intersection of any two nonempty open subsets is nonempty.

2) If X is irreducible, then every nonempty open subset U of X is dense and irreducible.

Proof. 1) Assume first that X is irreducible and let Uy and Uy be two open subsets of X. If U; N
U = @, it would follow, when taking complements, that X = U7 U U5, and X being irreducible,
we would have that U = X for either i = 1 or i = 2, hence U; = @ for one of the i's. To prove the
other implication, assume that X is expressed as a union X = X1 U X, with the X; s being closed.
Then X{ N X5 = &; hence either X{ = & or X5 = @, and therefore either X1 = X or X = X.



2) Let U be a nonempty open subset of X. We have X = U U (X \ U), where U is the closure of U
in X, since X is irreducible and X \ U # U, then U = X. Now that U is irreducible, let Uy, Uy
be two nonempty open subsets of U. Since X is irreducible, then by 1) above the open subsets.
U N Uy and U N Uy of X are nonempty. Hence, again by 1) are tow nonempty open subsets of X,
since X is irreducible, by 1) (U N Uy ) N (U N Uy) is nonempty. Therefore Uy N Uy is nonempty,
which yields (by 1)) U is irreducible.

Lemma 1.1.5 Let X be a topological space. A subspace Y C X in X is irreducible if and only if its
closure Y is irreducible.

Proof. By proposition 1.1.3 a subset Z of X is irreducible if and only if for any two open subsets U and V
of X which meet Z, U NV, also meet Z, i.e.,if ZNU # Dand ZNV # Qwehave ZN (UNV) # @.
Therefore, to conclude, it suffices to notice that an open subset of X meets Y if and only if it meets Y.

Definition 1.1.6 A maximal irreducible subset of a topological space X is called an irreducible compo-
nent of X.

Let X be a topological space. Lemma 1.1.5 shows that every irreducible component is closed. The set
of irreducible subsets of X is ordered inductively, as for every chain of irreducible subsets their union is
again irreducible. Thus Zorn's lemma* implies that every irreducible subset is contained in an irreducible
component of X. In particular, every point of X is contained in an irreducible component. This shows
that X is the union of its irreducible components.

For later use, we record one more lemma.

Lemma 1.1.6 Let X be a topological space and let X = | J;c; U; be an open covering of X by connected
open subsets U;.

1) If X is not connected, then there exists a nonempty subset | of I such that forall j € J, i € I\],
unu; =.
] 1

2) If X is connected, I is finite, and all the U; are irreducible, then X is irreducible.

Proof. To prove 1), note that if we can write X = Vy U V, as a disjoint union of open and closed subsets
V1, Vo, than each U; is be contained in either Vy or Vo, so we canset | = {i € I; U; C Vy}.

For the second part, recall that every irreducible subset is contained in an irreducible component, so
the assumption implies that X has only finitely many irreducible components, say Xy, ..., X,. Assume
n > 1. Since the X; are closed, and X is connected, X1 must intersect another irreducible component,
say Xp and let x € X1 N Xp. Let i € 1 with x € U;. Then U; N X7 is open and hence dense in X1, and
similarly for X, so that the closure of U; in X contains X1 U Xy, a contradiction.

Next proposition relates irreducible algebraic sets in A" to prime ideals of k[Ty, ..., Ty).

Proposition 1.1.4 An affine algebraic set X C A" is irreducible if and only if 1(X) is a prime ideal of
k[T, ..., Ty] (which is equivalent to the fact that k| X] is a domain).

Proof. Suppose X is irreducible and let f,g € k[Ty,...,Ty] be such that fg € I(X). Then X C
Z(fg) = Z(f) U Z(g). Since X is irreducible, then X is contained in Z(f) orin Z(g). So f € I(X) or
g € I(X), proving that 1(X) is a prime ideal.
Conversely, suppose that X is the union of two closed subsets X1 and X, that are both different from X.
Then, fori = 1,2, thereexist f; € I (X;) \ I(X)(i = 1,2) It is clear that f1 f, vanishes on X1 U Xp = X,
so that f1f, € I(X). Thus, I(X) is not a prime ideal of k[Ty, ..., Tyl.

YZorn’s lemma, also known as Kuratowski-Zorn lemma originally called maximum principle, is a statement in the lan-

guage of set theory, equivalent to the axiom of choice, that is often used to prove the existence of a mathematical object when
it cannot be explicitly produced.
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Example 1.1.4 1) The affine space A" is irreducible (and thus connected) by proposition 1.1.4, since
its coordinate ring k[A"] = k [Ty, ..., Ty] is an integral domain.

2) The union X = V (x1xp) C AZ? of the two coordinate axes X, = V (x2) and Xo = V (x1)
is not irreducible, since X = X; U Xp. But Xq and X, themselves are irreducible. This gives a
decomposition of X into a union of two irreducible spaces.

Remark 1.1.3 The correspondence of corollary 1.1.3 induces a bijection
{irreducible algebraic sets of A"} <— {prime ideals in k[T1,..., Tu]}

From the Nullstellensatz, we obtain the following relations between algebraic objects and and geometric
one :

Let A = k[Ty, ..., Ty] with k algebraically closed field. Then the mappings X +—— I(X) and ] —
Z(]) give a one-to-one inclusion reversing correspondence between the objects in the left and right-hand
columns in the following table :

Algebra | Geometry

maximal ideals of A | points of A"

prime ideals of A irreducible algebraic sets of A"
radical ideals of A | algebraic sets A"

(1.3)

Definition 1.1.7 An affine algebraic variety is an irreducible algebraic sets of A".

In what follows we introduce the concept of a Notherian (topological) space. As will be seen, these spaces
allow nice decomposition into irreducible components.

Noetherian topological spaces

Definition 1.1.8 A topological space X is called Noetherian if it is satisfies the descending chain condi-
tion for closed subsets : For any sequence closed subsets of X if :

Y12Y,2...
, is a such sequence, then there is an integer r such that Y, =Y, forall j > r.

Lemma 1.1.7 Let X be a topological space that has a finite covering X = \J;_; X; by Noetherian sub-
spaces. Then X itself is Noetherian.

Proof. Let X D Y1 2 Y 2 ... be a descending chain of closed subsets of X. Then (Y;N Xi)], is a

descending chain of closed subsets in X;. Therefore there exists an integer N; > 1 such that Y; N X; =
YN, N X forall j > Nj. For N := max {Ny,...,N,}, we have Y; = Yy forall j > N.

Lemma 1.1.8 Let X be a Noetherian topological space.

i) Every subspace of X is Noetherian.

ii) Every open subset of X is compact (in particular, X is compact).

Proof. i) Let (Z;); be a descending chain of closed subsets of a subspace Y. Then the closures Z; of
Z; in X form a descending chain of closed subsets of X which becomes stationary by hypothesis.
As we have Z; = Y N Z;, this shows that the chain (Z;); becomes stationary as well.
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ii) By i) it suffices to show that X is compact. Let (U;); be an open covering of X and let U be the
set of those open subsets of X that are finite unions of the subsets U;. As X is Noetherian, U has
a maximal element V. Clearly V = X, otherwise there existed an U; such that V.C VU U; € U.
This shows that (Uj;); has a finite sub-covering.

Example 1.1.5 A" is a Noetherian topological space. Indeed, If Y1 2 Y, O ... is a descending chain of
closed subsets, then 1(Y1) C 1(Ya) C ... is an ascending chain of ideals in A := k [Ty, ..., Ty]. Since
A is a Noetherian ring, this chain of ideals is eventually stationary. But for each i, Y; = Z(I1(Y;)), so the
chain Y; is also stationary.

Proposition 1.1.5 If X is an algebraic subset of A", then X is a Noetherian space.

Proof. Let X be an algebraic subset of A", by lemma 1.1.8 1) and example 1.1.5, then X is a Noetherian
space.

Theorem 1.1.3 Let X be a Noetherian topological space. Then X is a union of finitely many irreducible
closed subsets Xy of X. Furthermore, if X; ¢ X; for any i # j, then the subsets X are unique, up to a
permutation of the indices.

Proof. Let us prove the first part of this result. If X is irreducible, then the assertion is obvious. Other-
wise, X = X1 U Xy, where X; are proper closed subsets of X. If both of them are irreducible, the assertion
is true. Otherwise, one of them, say X is reducible. Hence X1 = X’1 U X’2 as above. Continuing in this
way, we either stop somewhere and get the assertion or obtain an infinite strictly decreasing sequence
of closed subsets of X. But the later case is impossible because X is Noetherian. To prove the second
assertion, we assume that

X=X1U---UXs =W U---UW,;

where no one of the X; (resp. W; ) is contained in another Xy (resp. Wy). We can assume that s < t.
Obviously, we have :
X1 = (Xlﬂwl)u---U(XlﬁWt)

Since Xy is irreducible, one of the subsets X1 NW; is equal to Xy, i.e, X1 C W;. We may assume
that j = 1. Similarly, we show that Wy C X; for some i. Hence X3 C Wy C Xj. This contradicts
the assumption X; € X; for i # j, so necessarily i = j, hence X1 = Wy repeating this argument for
X2, ..., Xs, we may assume that X; = W, forall 1 < i <s. It will follow that necessarily t = s.

Remark 1.1.4 Compare this proof with the proof of the theorem on factorization of integers into prime
factors. Irreducible components play the role of prime factors.

In view of proposition 1.1.5, we can apply the previous terminology to affine algebraic sets X.

Corollary 1.1.5 Every algebraic set in A" can be expressed uniquely -up to a permutation of the indices-
as a union of varieties, no one containing another.

Example 1.1.6 Let f = fi'--- f" be a decomposition of f into a product of irreducible polynomials.

Then
Z(f)=Z(HA)U---UZ(fr)

since the ideal (f;) of k|[Ty, ..., Tu], generated by f; is prime, then Z(f;) is a variety, therefore the above
gives the decomposition of Z( f) into a union of varieties.



12

1.1.2 Projective varieties

We fix a ground field k, which we will always assume to be algebraically closed (we will nevertheless
recall this fact in the statement of the main theorems). Let P"* denote the projective space consisting of
lines passing through the origin, but without including the origin the vector space k"*1. An element of
IP" represented by the line generated by the nonzero vector x = (xo, ..., xy) € k"1 will be denoted by
[x] = (x0:...:xp). The elements (k is not necessarily a number field) xo, . .., x, are not all zero, and
they are defined only up to a common scalar multiple. They are called the homogeneous coordinates of
the point [x] € IP™.

Let f € k[Ty, ..., Ty] be a polynomial of degree d with homogeneous decomposition

f=fo+...+ fa

Given a point x = (xg :...: x,) € P", we cannot define the expression f(x) as f(xo,...,Xn), since
it clearly depends on the choice of a vector representing x. Indeed, a general representative for x will
have the form (Axo,...,Axy) (with A # 0 ) and then f ((Axo,...,Axn)) = fo(Axo,..., Axy) +
o fa(Axo, .o Ax) = fo (X0, X)) + .o+ Ay (x0,. .., X)), which clearly varies when A varies.
However, if f is homogeneous of degree d, we have f (Axq, ..., Axy) = A4f (xq,..., xn).

Even if then f(x) is not defined neither, it makes sense at least to say when it is zero, since obviously
f (Axo, ..., Axy) = 0 forany A # 0 if and only if f (xo,...,xn) = 0.

Lemma 1.1.9 Let k be an infinite field, f € k[Ty,..., T, fo,- .., f4 be forms with deg (f;) = i, such
that f = Y% fi. P € P"(k) is a root of f if and only if P is a root of f; for all 0 < i < d.

Proof. If P is a root of every f;, then obviously it is also a root of f. Conversely, let (xo : ...: x,) bea
fixed tuple of homogeneous coordinates of P. We consider the polynomial

d .
gA) = f(Axo,..., Axy) = Y _A'fi(x0,...,%n)
i=0
For P to be a root of f, the polynomial g must vanish on all A € k\{0}. Since k is infinite, this is only
possibleif g =0, i.e., fi (xo,...,x,) =0forall 0 <i <d.

The main objects we are going to study will be the subsets of a projective space defined as zeros of homo-
geneous polynomials. More precisely :

Definition 1.1.9 A projective algebraic set X C P" is a subset for which there exists a set of homoge-
neous polynomials { f | j € J} such that

X={peP"|fi(p)=0foralljec ]}

For practical reasons, and in view of the previous lemma, we will say that f(x) = 0 for a point x € P"
and an arbitrary polynomial f € k [Ty, ..., T,] if and only if any homogeneous component of f vanishes
at x. With this convention we can make the following definitions :

Definition 1.1.10 i) The projective algebraic set defined by a subset M C k[Ty, ..., T,,| will be
Z(M) :={xeP"| f(x)=0, forany f € M}.
ii) The homogeneous ideal of a subset X C IP" will be the ideal
I(X):={f €klTo,..., Tu] | f(x) =0 forany x € X}.
iii) The graded ring of a projective algebraic set X is the ring
S(X) :=k[Ty,..., Tu] /I(X).
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Remarks 1.1.2 i) If we want to distinguish these projective constructions from the affine ones in
definition 1.1.9 and definition 1.1.1, we will denote them by Z,(M) and I,(X), and the affine ones
by Z,(S) and I,(X), respectively.

i) An ideal T of k[Ty, ..., Ty] is said to be homogeneous if, for every f = YL, f; € I, fi form
of degree i also f; € I for 0 < i < d. So, as one can easily see, X C P", the ideal 1(X) is
homogeneous.

Example 1.1.7 1) As in the affine case, the empty set © = Z,(1), and the whole space P" = Zp(0)
are projective algebraic sets.

2) Let x € IP" be a point. Then the one-point set {x} = Z,(To — xo, ..., Ty — xp), with (xo, ..., Xn)
the homogeneous coordinates of x is a projective algebraic set.

Proposition 1.1.6 The operators Z,, and 1, satisfy the following properties :

1) I(IP") = {0} (k is assumed to be infinite), I,(D) = k[T, ..., Ty], Z,({0}) =P",and Z,({1}) =
Q.

2)If M C k[Ty,..., Ty and (M) is the ideal generated by M, then Z,(M) = Z,((M)). In
particular, any projective algebraic set can be defined by a finite number of equations.

3) IJCM C M/ C k[TO,...,Tn], th@n Zp (M/) C ZP(M) C ]I)I/l.

4) If{M]-}].E] is a collection of subsets of k [To, . .., Ty), then Z, (Uje] M]-> = Njes Zp (M;).

5) If{If}je] is a collection of ideals of k [To, . .., Ty), then Z, (Zje] I]-> = Njej Zp (1)
6) If I C k[To, ..., Ty is any homogeneous ideal, then Z, (1) = Z,(rad(I)).

7) If LI' C k[To,..., Ty are two homogeneous ideals, then Z, (INI") = Z, (II') = Z,(I) U
Z, (I').
p

8) If X C X' CIP", then I, (X') C I,(X).
9) If{Xj}].e] is a collection of subsets of P", then I, (Uje;X;) = Niej Iy (X;)-

10) Forany X C P", X C Z,(1(X)), with equality holding if and only if X is a projective algebraic
set.

Proof. We will just prove the first part of 1), leaving the rest since it can be proved by analogous arqu-
ments as we saw in the affine case. So we just need to prove that a homogeneous polynomial vanishing at
IP" is necessarily the zero polynomial. We will prove it by induction on n, the case n = 0 being trivial. So
assume n > 1land write f = fo+ fAiT1 + ...+ f4T%, with fo, f1,- .., fa € k[To, ..., Ty_1] and fz # 0.
We thus know by induction hypothesis that we can find (xq : ... : x,_1) such that fz (xo,...,Xy—1) #
0. But then the polynomial f (xo,...,x,—1,Tn) € k[Tyx] is nonzero, so it has a finite number of roots.
Hence the fact that k in infinite implies that we can find a point (xg : ... : X,_1 : Xn) not vanishing on

f.

Definition 1.1.11 Part 1), 4) and 7) of proposition 1.1.6 show that the set of projective algebraic sets
satisfy the axioms needed to be the closed sets of a topology in IP". This topology (in which the closed
sets are exactly the projective algebraic sets) is called the Zariski topology on IP". The intersection of
a projective algebraic set with an open set will be called a quasi-projective algebraic set. The topology
induced by the Zariski topology on any quasi-projective algebraic set will be still called Zariski topology
on that quasi-projective algebraic set.
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Recall the following : Let I be a homogeneous ideal of k[Ty, . .., T,|. We say that 1 homogeneous prime
(or graded prime) if for any forms (i.e., homogeneous polynomials) f and g of k[Ty, ..., Ty], if fg € I,
then f € 1 or g € 1. The (homogeneous) ideal 1 is said to be prime if the above implication holds but for
arbitrary polynomials (non necessarily homogeneous) f and g of k[Tp, . .., Ty].

Lemma 1.1.10 i) A homogeneous ideal I of k [Ty, ..., Ty] is prime if and only if
fg e limpliesf el or g€l

for arbitrary forms f,g € k[Tp,..., Ty).

it) If I is homogeneous, then also rad(I) is homogeneous.

Proof. i) We have to show that a homogeneous ideal I of k[Ty, ..., Tn] is prime if and only if it is
homogeneous prime. One sense of this implication is clear. Remains to prove that I is prime when
it is homogeneous prime. To see this, assume that there exists polynomials f, g such that

feel butf,gé¢l

Let f, g be such that deg(fg) is least with this property. Write

f=f+...+fo
g=g+...+%0

where f;, g; are forms of degree i, and both fi and g; are nonzero. Since I contains fg, is must
also contain its highest degree form frg;, and therefore either fi or g;. Assume fi € I. Then also
(fke1+ .-+ f0) g = f§— fxg € L and it is of lower degree than fg. So either (fy_1 + ...+
fo) € I, and therefore f € I, 0r g € I.

ii) Let f = fo+ ...+ fi bea polynomial of k[Ty, ..., T,| with fo, ..., fi being forms with increasing
degrees. It suffices to show that f € rad(I) implies f, € rad(I). From f € rad(I) we get
f" = f{'+ lower degree forms € I for some m, so fI" € I, and therefore fi € rad(I).

Theorem 1.1.4 Anideal I of kT4, ..., Ty] is homogeneous if and only if it is generated by a (finite) set
of forms.

Proof. A homogeneous ideal is clearly generated by forms (i.e., by homogeneous polynomials). Con-
versely, an ideal that is generated by forms is plainly a homogeneous ideal. Indeed, these facts are true in
general for any ideal of a graded ring. The fact that such a generating subset can be finite follows from
the fact that the polynomial ring k[T, . . ., Tu] is noetherian.

As for affine algebraic sets, we call a projective algebraic set X C IP" irreducible if it is so when endowed
with its Zariski topology, i.e., if it cannot be written as the union of two algebraic subsets.

An irreducible projective algebraic set is called a projective variety. Analogously to the affine case one
proofs that every projective algebraic set can be decomposed uniquely into a union of finitely many pro-
jective varieties. These coincide with the irreducible components of the projective algebraic set.
Furthermore, in analogy to the affine case, one shows (using lemma 1.1.10 1)) that the projective algebraic
set X is irreducible if and only if 1,(X) is prime.

In what follows, we want to show that A" can be considered as a topological subspace of P". To do this,
we need the following definition :
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Definition 1.1.12 @) Let f =) .. i cN@ij, iy T{l .- - Tin be a (nonzero) polynomial of degree d of
k[Ty, ..., Ty). We define its homogenization to be the polynomial

T T
h d 1 n
=T — ., =
=T (TO TO)
— Y ay, TR LT of KTy, ., T
il;"'/inGN

obviously this is a homogeneous polynomial of degree d.

ii) The homogenization of an ideal I of k[Ty,...,T,] is defined to be the ideal 1" of k[Ty, ..., Ty
generated by all f" for f € L.

Remark 1.1.5 In the above the homogenization f" would be called the homogenization with respect to
the (new) indeterminate Ty. The same homogenization could be made with respect to any other (new)
indeterminate, e.g., when a polynomial f € k[R, S|, then for any new indeterminate V, one can define a
homogenization of f with respect to V and have a polynomial f* € k[R, S, V).

Example 1.1.8 For f = T? — T2 — 1 € k[Ty, T, we have f" = T? — T? — T2 € k[Ty, Ty, T2).

Remark 1.1.6 If f,¢ € K[Ty, ..., T, are polynomials of degree d and e, respectively, then fg has degree
d + e, and so we get

T T T T
h_qarep D Toy T Tuy o

However, (f + g)" is clearly not equal to f" 4 ¢" in general.

Notation. Let f; = T; € k[Ty, ..., T,] and consider the open subset U; = P" \ Z,(T;) of P". We

define the map
Yo,

4)1-:U1-—>A”,(x0:...:xn)n—>(xi et

)

As one can easily see, ¢ is a bijective map, with inverse
Y A" — U, (ag, ..., 8;...,40) — (ag:...: 1. .t ay)

Proposition 1.1.7 Fori € {0,...,n} the map

X0 . Xn

4)1-:U,-—>A”,(x0:...:xn)l—>(xi et

)

is a homeomorphism® when U; and A" are endowed with their Zariski topologies.

Proof. We will show this result for i = 0 and (the other cases follow in the same way). Let X C A"
be an algebraic set of A" and write X = Z(f1,...,fy) with f1,...,fr € k[T1,...,Ta]. One can
easily see that ¢~ (X) = Z,(g1,...,8r) N Up, where gj = f].h,for all j (recall here that f].h denotes the
homogenization of f;). So, ¢~ 1(X) is closed Uy. Conversely, let Y be an algebraic set of Uy, then we can
writeY = Z,(g1,...,8r) N Uy with g1, ..., 8, the homogeneous polynomials in k[Ty, ..., T,;]. One can
see that ¢(Y) = Zu(Ql:- cey Qr)/ Q,‘(Tl, ey Tn) = gi(l, ey Tn)

Remark 1.1.7 We have :

where U; = P" \ Z,(T;) and by the above U; ~ A", i.e., U; and A" are homeomorphic. Thus IP" has a
covering by open subsets all homeomorphic to A".

SA homeomorphism between two topological spaces X and Y is a bijection f : X — Y both f and f~1 are continuous.
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1.2 Dimension of a variety

In this section, we will introduce the notion of dimension of a topological space, and we will give some
of its elementary properties. Before this we will recall some facts concerning the (Krull) dimension of a
(commutative) ring since will apply this in the study of the dimension of an algebraic variety (projective

or affine).
1.2.1 Dimension of rings
Definition 1.2.1 Let R be a commutative ring and P a prime ideal of R.
i) The height of P is the greatest integer n when there exists a family
PG GP=P

with all P; being prime ideals of R. We write in this case ht(P) = n. If such (greatest) integer does
not exist, such a large integer does not exist we write ht(p) = oo.

ii) The (Krull) dimension of the ring R is
dim(R) := sup{ht(P) | P C R prime }.
Examples 1.2.1 1) Fields are of dimension 0.

2) If R is a principal ideal ring which is not a field, then dim(R) = 1.
3) For any field k, dim(k[X]) = 1.

1.2.2 Transcendence Degree
We can describe the size of a field extension k/ E using the idea of dimension from linear algebra
[k : E] = dimg(k)
But this doesn’t say enough about the size of really big field extensions.
K(Ty) : K] = [K(Ty,...., Ty) : K] = oo

Another notion of the size of a field extension k/E, called transcendence degree is widely used in field
theory and linear algebra. It has the following two important properties.

tr.degi(k(Ty,...,Ty)) =n
and if k/ E is algebraic, tr.degg (k) = 0.

Algebraic (In)dependence

Definition 1.2.2 A subset S of k said to be algebraically independent over E, if for all nonzero poly-
nomials f(Ty,...,T,) € E[Ty,...,Ty), and s1,...,s, € S (all distinct), we have f(s1,...,5,) # O.
Otherwise, we say that S is algebraically dependent over E.

Example 1.2.1 1) If k/E is an algebraic extension and o € k then {a} is algebraically dependent
over E.

2) Ink(Ty,..., Ty)/k {Ty,..., Tn} is algebraically independent.
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Lemma 1.2.1 If S C k is algebraically independent, then S is maximal if and only if k is algebraic over
E(S).

Proof. See [30, Section 030D].

Theorem 1.2.1 (Exchange Lemma). Let k/E be a field extension. If k is algebraic over E(ay, ..., an),
and {by, ..., by} is an algebraically independent set, then m < n.

Proof. See [30, Section 030D].

Corollary 1.2.1 Ifk/E has a maximal, finite, algebraically independent set {s1, ..., sy}, then any other
maximal algebraically independent set also has size n.

Remarks 1.2.1 i) In fact it is true that if k / E has two maximal algebraically independent sets S and
T then |S| = |T|. This is analogous to the fact that the cardinality of a vector space basis is unique,
even when it is infinite. The proof of this fact is difficult, and we will not need this result. We refer
the read to [30, Ch 09FA, Section 030D].

ii) Every extension k/E has a maximal algebraically independent subset.

Definition 1.2.3 1) A maximal algebraically independent subset S C k is called a transcendence
base for k/E. So by the above lemma, S is a transcendence base for k/E if and only if S is alge-
braically independent and k is algebraic over E(S).

2) The transcendence degree of k/ E is the size of a transcendence base. It is denoted tr.deg(k/E).

Example 1.2.2 tr.dego(Q(v/2)) = 0.

Theorem 1.2.2 Let k be a field and A be a finitely generated algebra over k. Assume that A is an integral
domain and let F be its field of fractions. Then dim(A) = tr.degy(F).

Proof. See [6, Theorem, 8.9.11, p.282].

Example 1.2.3 We have tr.degi(k(Ty, ..., Tn)) = n, sodim(k[Ty,..., Ty]) = n.

1.2.3 Dimension of a topological space

Definition 1.2.4 Let X be a nonempty topological space. Considering a strictly increasing chain of
irreducible closed subsets of X :
Xo & X1 &0 & Xy

We call d the length of this chain (that is, the number of inclusions in the chain).
The Krull dimension of X is the supremum of the lengths of such chains, denote it by dim(X). We then
write dim(X) = d.

Remarks 1.2.2 1) This notion has no interest if X is a Hausdorff space. Indeed, in such a case we
have dim(X) = 0.

2) By convention we assume that the dimension of the empty set is equal -1.

3) Note that the dimension of X may be equal to co.

Lemma 1.2.2 Let X be a nonempty topological space and Y be a nonempty subspace of X. Then
dim(Y) < dim(X). In particular, if dim(X) is finite, then also dim(Y) is so (in this case, the inte-
ger dim(X) — dim(Y) is called the co-dimension of Y in X).
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Proof. Let So C --- C Sy a family of irreducible closed subsets of Y and for each i, let S; be the closure
of S; in X, then by lemma 1.1.5, So C - -+ C Sy is a family of (increasing) irreducible closed subsets of
X. Moreover, foranyi € {1,...,d}, we have S; = S;NY, s0 S;_1 # S;, hence dim(Y) < dim(X).

Proposition 1.2.1 Let X be a nonempty topological space. The following statements hold :
1) If X = Uie U; is an open of X, then dim(X) = sup{dim(U;)}.
2) If X is Noetherian, and Xy, . .., X are its irreducible components, then dim(X) = sup;{dim(X;)}.
3) If Y C Xis closed, X is irreducible, dim(X) is finite and dim(X) = dim(Y), then Y = X.

Proof. 1) Let Xo C --- C Xy be a chain of irreducible closed subsets of X and let xq be a point of
Xo, then of X. Let x € Xq be a point there exists an index i € I such that x € U;. Plainly, for all
j €10,...,d}, X; N U; is nonempty; moreover this last set is an irreducible closed subset of U;.
Consider
XonW; CXqaNnu; € ---C X;Nu;

of irreducible closed subsets of U;. It is a chain of length d. We check that for any 0 < j <
d —1, we have X; N U; # X; N Ujyq. This shows that dim(X) < dim(U;). Thus, dim(X) <
sup;{dim(U;)}. The reverse inequality follows by lemma 1.2.2.

2) Any chain of irreducible closed subsets of X is completely contained in an irreducible component
of X. Therefore, dim(X) < sup;{dim(X;)}. As in 1) above the equality follows by lemma 1.1.5.

3) Let Y be a proper closed subset of X and let Yo C - - - C Y be a chain of irreducible closed subsets
of X. Considering the following chain

Yo&--CYa&X
of irreducible closed subsets of X, we see that dim(Y) < dim(X).

In what follows, we restrict our attention to the case of varieties. We recall that k denotes an algebraically
closed field.

Dimension of an affine variety
Let X C A" be a quasi-affine variety.
Theorem 1.2.3 LetX be an affine variety. Then
dim(X) = dim(k[X])
where K[X] is the affine coordinate ring of X.

Proof. Let Xo C - - - C X, bea family of irreducible closed subsets of X (i.e., of affine varieties contained
in X), then
Po=1(Xp)C - C Py =1(Xo)

and Py, . .., Py are prime ideals of k[Ty, ..., Ty]. Foranyi € {1,...,m}, we have X; C X, s0 I(X) C
[(X;). Thus, P; are prime ideals which contain 1(X). It follows that P; + 1(X) are distinct prime ideals
of k[X]. Therefore, dim(X) < dim(k[X]). The reverse inequality follows in the same way by noticing
that any prime ideal of k[X] corresponds to a well defined irreducible closed subset of X.

Corollary 1.2.2 Let X be an affine variety. Then

dim(X) = tr.deg(Frac(k[X]))
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Proof. Since X is an affine variety, then k| X| is a finitely generated k-algebra that is an integral domain,
so dim(k[X]) = tr - degy(Frac(k[X])). The corollary follows then by theorem 1.2.2.

Corollary 1.2.3
dim(A") = n.

Proof. Indeed, we have dim(A") = dim(k[Ty, ..., Tu]) = n.
Corollary 1.2.4 The dimension of an affine variety is finite.
Proof. Let X C A" be an affine variety. Then by lemma 1.2.2, we have

dim(X) < n.

1.3 Regular functions and morphisms

In this section, we will define regular functions on both affine and projective varieties and also morphisms
between varieties. We show at the end of this section that there is an equivalence of categories between the
category of affine varieties (over the base field k) and the category of finitely generated (integral) domains
over k.

1.3.1 Regular functions

Definition 1.3.1 Let X C A" be a quasi-affine variety and let x € X.

i) A function f : X — k is said to be regqular at x if there exists an open subset U C X containing
x and polynomials g, h € k[T, ..., T,|, with h(y) # 0 for all y € U, such that for all y € U, we
have

_ 8
f|u(]/) = W

ii) A function f : X — k, is called a reqular function if f is reqular at all points of X.

Example 1.3.1 Let f € k[Ty, ..., T,|, then the polynomial function defined is a reqular function on any
quasi-affine variety X of A".

Proposition 1.3.1 Let X be a quasi-affine variety.

1) If f : X — ks a reqular function, then f is continuous for the Zariski topologies on X and k.

2) If f and g are regular functions on X that restrict to the same function on some nonempty open
subset U C X, then f = g.

Proof. 1) As continuity is a local notion, it suffices to consider the case where f = § for some
polynomial functions g and h with h nowhere vanishing. Recall that the proper closed subsets of
k (for its Zariski topology) are the finite subsets of k, so continuity of f then follows from the fact
that, for a € k, we have f~'(a) = Z(g — ah), which is a closed subset of X.

2) Theset Z = {x € X| f(x) = g(x)} is the inverse image of 0 (€ k under the reqular function
f — & soby 1) Zaclosed subset of X. Suppose that if f; = gy, then it follows from the fact that
U is dense in X (see proposition 1.1.3) that Z = X.

Definition 1.3.2 Let X C IP" be a quasi-projective variety and let x € X
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i) A function f : X — k, is said to be reqular at the point x if there exists an open subset U C X
containing x and homogeneous polynomials of the same degree g, h € k[Ty, ..., T,) with h(y) # 0
forally € U, such that for all y € X, we have

(v)
h(y)

ii) A function f : X — kis called a regqular function if it is regular at all points of X.

oqQ

f|u(1/) =

Proposition 1.3.2 Let f : X — k, be a reqular function. Then f is continuous when both X and k are
endowed with their Zariski topologies.

Proof. As in the affine case, it is enough to prove that for any element a € k, f~1(a) is closed in X,
a € k. For all x € X, a convenient an open neighbourhood U of x, and homogeneous polynomials of the
some degree g, h with h(y) # 0, for all y € U such that

fuly) = Eg;

oqQ

Then
fH(a) = {y € U|g(y) —ah(y) = 0} = UNZy(g —ah)
, which is clearly closed in U. The proposition then the following lemma.

Lemma 1.3.1 Let Y be a topological space, Y = J;c; U; be an open covering of Y and Z a subset of Y.
Then Z is a closed subset of Y if and only if Z N Uj; is closed in U; for all i.

Proof. If Z is closed in Y, then clearly Z N Uj; is a closed subset of U; for all i € 1. Conversely, the fact
that each Z N U; is closed in U; implies the existence of a collection of closed subsets Z; of X such that
U;,NZ = U; N Z;. We then have :

Y\Z = Uie(Ui\ Z)
Uiel(uimY\Z)
= Uier(;NY\ Z;)

which implies that Z is a closed subset of Y.

Terminology : In what follows, the word variety will be used to mean a quasi-affine or a quasi-projective
variety (which includes affine and projective varieties).

1.3.2 Morphisms of varieties

Definition 1.3.3 Let X and Y be varieties. A morphism of varieties ¢ : X — Y is a continuous map
such that for all nonempty open subset V of Y, and for any regular function f : V. — k, the map
fop: ¢~ (V) — kisareqular function.

Notation. Let X and Y be tow varieties. We denote by Homy,,(X,Y') the set of morphisms from X to
Y.

Remark 1.3.1 The composition of two morphisms is a morphism. Indeed, one can consider the category
of varieties whose morphisms are those defined in above.

Let U; = P" \ Z,(T;), we previously saw that U; is homeomorphic to A™. The next proposition shows
that the canonical homeomorphism between U; and A" is an isomorphism of varieties.
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Proposition 1.3.3 Let U; = IP" \ Z,,(T;). Then the map

¢i Uy — A", (xg: ... 1 x0) — (=, ...,
Xi Xi

is an isomorphism of varieties

Proof. We have already shown in proposition 1.1.7 that ¢ is a homeomorphism.

To simplify the notation we take i = 0 and denote Uy and ¢g simply by U and ¢, respectively. To show
that ¢ is a morphism of varieties, let V be a nonempty open subset of A" and let f : V. — k be a reqular
function. Locally, f is a quotient of two polynomials functions, so without losing the generality we can
assume that f is a quotient on the whole V i.e., there exist polynomials g and h € k[T, ..., T,|, such
that for ally € V, h(y) # 0and f = £. One can then easily deduce that f o ¢ : ¢~ (V) — kisa
regular function. Indeed, we have :

_go9y) _ T§f'(y)
hog(y)  T5g"(y)

(fod)y) = oo)w) ,forally € ¢71(V)

where e = deg(f) and d = deg(g).

Conversely, Recall ¢~ : A" — U is defined by (by,...,by) — (1 : by : ... : by). Let W be
a nonempty open subset of U and ¢ : W — k a reqular function. go ¢! : ¢(W) — kisa
reqular function. Then, locally g is a quotient of two homogeneous polynomials of the same degree. Also
here without losing the generality we can suppose that on whole W g is a quotient of such polynomial

functions, say 5 where P,Q € k[Ty,..., TnlieVy € W, Q(y) # 0and ¢(y) = %
go¢~ 1 p(W) — k, is then defined as follows :

_ s(P)(x
gop l(x) = s((Q))((x))'vx € p(W), wheres(P) := P(1,Ty,...,Tn).
This shows that go ¢~' : $(W) — k is a reqular function. This shows that ¢ is an isomorphism of
varieties.

Remark 1.3.2 We previously saw that P" = \Ji_, U;. Moreover, we saw that U; is homeomorphic to
A", so dim(U;) = n. It follows that dim(PP") = sup;(dim(U;)) = n.

Lemma 1.3.2 Let X be an affine variety and ¢ : X — k (= A') be a map. Then, ¢ is a morphism of
varieties if and only if ¢ be a regular function.

Proof. Straightforward.

Proposition 1.3.4 Let X be an arbitrary variety and let Y C A™ be an affine variety. A map of sets
Y : X — Y is a morphism if and only if t; o ¢ is a reqular function on X for each i, where t1,. ..ty
are the coordinate functions on A™.

Proof. By lemma 1.3.2, for all i € {1,...,m}, t; is a morphism. So, assuming that  is a morphism,
it follows that t; o ¢ is also a morphism. Conversely, suppose that for all i, t; o\ is a regular function,
then for any polynomial function f : Y — k, f o is reqular function. So, for any algebraic set
Z(Py,...,P) CY, it follows from the equality

r
PN (P B = (V(Prog) 71 ({0})
i=1
that  is continuous. Let § : Y — k be a reqular function, then there exists a nonempty open subset

U C Y and polynomials g1, 8> such that g = %. Thus, for any x € ¥~ 1(U) :

81(¥(x))

and we know g; o ¢ is reqular functions fori = 1,2. So, g o ¥ : v~ (U) — k is a reqular function.
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Now, we introduce some rings of functions associated with any varieties.

Definition 1.3.4 Let X be a variety. We denote by O(X) the set of all reqular functions on X. One can
easily see that endowed with the natural addition and multiplication, O(X) is in fact a (commutative)
ring we call the ring of regular functions on X. For all x € X, we define the local ring of X at x, denoted
Ox x, or simply by Oy, as being the ring of germs of regular functions at x. Oy can be defined as follows
: the set of all pairs (U, f), where U is an open subset of X containing x and f : U — k is a reqular
function, and we consider on this set of pairs the following relation :

(U, f) ~ (V.8) if flunv = Junv

One can easily see that this is an equivalence relation. We define Oy to be the corresponding to quotient
set. Usually, when there is no risk of confusion, we just write f for the class of some pair (U, f). For a
convenient set of polynomials S and reqular function g defined on some open subset U \ Z(S) of U, we
will write g0y sy 0F §[u\z(s), for the class defined by the pair (U\ Z(S),g). Note that Oy is indeed a
local ring for the canonical addition and multiplication laws. Its maximal ideal my is the set of germs of
reqular functions, which vanish at x (for if for a reqular function f, we have f(x) # 0, then % is regular

function in some neighborhood of x). One can easily see that the residue field Oy /my is isomorphic to k.

Remarks 1.3.1 1) In what follows, we will need to consider the (canonical) structure of O(X) as a
k-algebra. We precise that this structure is given by the following operations :
Let f : X — kand g : X — k be two regular functions on X, then.
* f+g: X —>k, is defined by x — f(x) + g(x).
x fg: X — k, is defined by x — f(x)g(x).
x Af 1 X — k, is defined by x — Af(x), forall A € k.
2) Similarly, it is easily verified that O, is a k-algebra when equipped by the following operations :
* << U,f >+ < V,g >=<Un V,f‘uﬁv'f'g‘uﬁv >.
* < U,f > X < V,g >= UﬂV,f‘umV X g‘umv >.
* A< U, f>=<UAf >.
Definition 1.3.5 Let X be a variety, we define the function field k(X) of X as follows : an element of

k(X) is an equivalence class of pairs (U, f) where U is a nonempty open subset of X, f is a reqular
function on U, and where we identify two pairs (U, f) and (V,g) when f = gon UN V.

Remark 1.3.3 Note that k(X) is indeed a field, for :

x Let < U, f >and < V,g > two elements of k(X). Since X is irreducible, any two nonempty
open subsets have a nonempty intersection (see proposition 1.1.3). We define :

<U f>+<V,g>:=<UNV, flunv + gunv > -

We show that this defines an abelian group structure on k(X). In the same way we define the
product of two elements of k(X) and the product of an element of k(X) by a scalar of k. We can
easily see that this gives a (commutative) ring structure on k(X).

x If < U, f >€ k(X) with f # 0, we can restrict f to the open set W = U \ Z(f) it does not
vanish, so that % is reqular function on W, hence < U, f > is invertible in k(X) with inverse

1
<W,7>.
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Relation between k[X| and O(X) when X is an affine variety

Considering an affine variety X C A", the algebraic object k[X] := k[Ty,..., Ty)/I(X) consists of
all polynomials k[T, ..., Ty] modulo the equivalence relation ~ (ie., f ~ gif f —g € I(X)). We
can identify each element of k[X] with a function defined on X i.e., if P € k[Ty,..., T,|, then we let
fri1(x) + X — k be the map defined by fp,jx)(x) := P(x) forall x € X. It is clear that fp_ 1(x)isa
reqular function on X. Thus we have a map :

yio KX — OX)

P+I(X) = friix) (14

It is easy to verify that <y is a homomorphism of k-algebras. Moreover, by proposition 1.3.1 2) 7y is
injective.

Theorem 1.3.1 Let X C A", be an affine variety with affine coordinate ring k[X|. Then :

i) The k-algebras k[X] and O(X) are isomorphic (a canonical isomorphism is given by the map vy in
above).

ii) For each point x € X, let my C k[X] be the ideal of functions vanishing at x. Then x — my
gives a 1-1 correspondence between the points of X and the maximal ideals of k[X].

iii) For any point x € X we have k[X]w, = (T1 — x1,..., Tn — xp) is isomorphic to Oy and we have
dim(Oy) = dim(X).

iv) Frac(k[X]) is isomorphic (as a field) to k(X) and the transcendence degree of the finitely generated
extension k(X) /k is equal to dim(X).

Proof. i) We have seen above that the map vy : k[X] — O(X) is a k-algebra monomorphism. We
will see below that it is also surjective, hence an algebra isomorphism.

ii) By proposition 1.1.2 x —— my is a one-to-one correspondence between the points of X and the
maximal ideals of k[X].

iii) Let f € k[Ty,..., Ty be a polynomial, and let’s denote its image in k[X] by f. For a point
x = (x1,...,Xn) € X such that f(x) # 0, y(f) is a unit with inverse 1/v(f)x\z(f). Thus, we
obtain an algebra homomorphism

k[ X]m, — Ok

induced by vy, which is injective (since any polynomial functions that coincide on a nonempty
subset of X are actually equal). Moreover, this is surjective by definition of a reqular func-
tion. We previously saw that dim(X) = tr.degy(Frac(k[X])). Moreover, we have dim(Oy) =
tr.degi(Frac(Oy)). We have also Frac(k[X]) = Frac(k[X]mw,), so dim(X) = dim(Oy).

iv) Any nonzero element f € k[X| maps under vy to a unit with inverse ( Jlf)‘ x\z(f)- Thus we obtain
an injective map
Frac(k[X]) <= k(X)
In fact, this map is also surjective : for each nonzero < U, f > € k(X), we have < U, f > € O,

for some x € X This follows by the already established isomorphism in iii) and the fact that the
following diagram commutes :

k[X]mx — ’ Ox

Frac(k[X]) — k(X)
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By theorem 1.2.2 dim(k(X)) = tr.degy(k(X)) and that dim(X) = dim(k[X]). Hence k(X) is an
algebraic extension of k with transcendence degree equal to dim(X).
To end the proof of i), let’s show that the homomorphism y is surjective. It suffices to see that, up to
identification, we have :
k[X] O(X)
nxeX Ox
mxeX k[X] my

Surjectivity now follows from the general fact that for an integral domain R, we have (), Ry, = R (where
the intersection is considered inside the fractions field of R).

ININ 1IN

Remark 1.3.4 Let U be a nonempty open set of X. We can define a homomorphism of algebras over k, h
from k[X] into k[U] by
< V,f > — < VﬂU,meu > .

One can easily see that h is isomorphism of algebras over k. So k[U| ~ k[X]. Let X be an arbitrary
variety and Y an affine variety and let ¢ : X — Y be a morphism. Then there is induced map

p*: O) — O(X)
foom= ¢t (f)i=fo¢
We have also already seen that k[Y]| ~ O(Y) (see theorem 1.3.1). We get then a map k[Y] — O(X),
which is a homomorphism of algebras over k, and so get a map

,51 Homvar(X/Y) — Homk—alg< [Y] ( ))
¢ — P

The following proposition shows that this map is bijective.

Proposition 1.3.5 The map B defined previously is bijective.

Proof. We describe an inverse to B. Let h : k[Y] — O(X) be a homomorphism of algebras over k and
let y; : Y — k be the coordinate functions. We previously saw that k[Y] can be (canonically) identified
with O(Y). Under this identification, the functions y; plainly generate the k-algebra of k[Y] (we can
also take y; = T; + I(Y) € k[Y]). Let 3; = h(y;) € O(X), so that 3; : X — k is a regular function.
Suppose that Y is a variety in A", and consider the map

¢y - X — A"
x o (1(x), - 5n(x)

ForeachP € 1(Y),ie., P+ 1(Y) = 0ink[Y], we have P(¢(x)) = P(31(x),...,3n(x)) = P(h(y1)(x),...

Since h is a homomorphism we have P(h(y1)(x),..., h(yn)(x)) = K(P+I(Y))(x) = 0, and so
¢n(x) € Z(I(Y)) = Y, which shows that ¢,(X) C Y. If we write t; for the coordinate function of
A" (so that y; = ti‘y), then we have t; o ¢y, = 3; for all i. It follows from proposition 1.3.4 that ¢y, is a
morphism (of varieties). We have then

o Homk_alg(k[Y],O(X)) — Homz;ar(X,Y)
h — $n

Let’s show that a and B are mutually inverse to each other. We have B(¢y,) = ¢, = f — f o ¢y, for all

f e klY]. Let x € X, then f o ¢ (x) = f(h(y1)(x),...,h(yn)(x)). So, writing f = Q + I(Y), for
some Q € k[T, ..., Tn]. We have f o ¢ (x) = h(f)(x). Thzs shows that ¢*(f) = h(f). So B(¢n) = h,
i.e poa(h) = h. It follows that o & = idpom,_, (k[Y], O(X)). Similarly, given ¢ : X — Y, and
we have o B(P) = a(P*) = ¢y : X — Y, x — (Lo P(x), ..., ty 0 p(x)) = (). which shows
that oo B(v) = . It follows that a o B = id oy, (x,v)-
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Corollary 1.3.1 If X and Y are two affine varieties, then X and Y are isomorphic if and only if k[X] and
k[Y] are isomorphic as algebras over k.

Proof. Immediate from proposition 1.3.5.
Remark 1.3.5 In the language of categories, we can express the above result as follows :

Corollary 1.3.2 The functor X — k[X] induces an arrow-reversing equivalence of categories between
the category of affine varieties over k and the category of finitely generated integral domains over k.

Proof. Immediate from proposition 1.3.5.

1.4 Rational functions

In Algebraic Topology, the notion of homeomorphism is relaxed to homotopy equivalence which leads to
significant theorems (Whitehead's Theorem)1 relating topology to algebra. Similarly, rational functions
are a relaxation of morphisms of varieties. We continue in this section, we explore how this notion inter-
acts with algebra. We continue in this to assume that k is an algebraically closed field.

Let X and Y be two varieties. We consider the set Sx y of all pairs (U, ), where U is a nonempty
open subset of X, and ¢ : U — Y is a morphism of varieties. On Sxy, we define the following
equivalence relation

(U, ¢) ~ (V,9) if and only if punv = $unv
The equivalence class of (U, ¢) by this relation will be denoted < U, ¢ >.

Definition 1.4.1 i) A rational function of varieties X — Y is an equivalence class (with respect to
the above equivalence relation) of a pair (U, ¢), where U C X is an open subset, and ¢ : U — Y
a morphism.

ii) We say that a rational function X — Y is dominant if for some (or equivalently, any) represen-
tative pair (U, ¢), ¢(U) is dense in Y.

Remark 1.4.1 Let ¢ : X — Y, and 1 : Y — Z be two rational functions. Suppose that ¢ = (U, ¢),
and P = (V, ), and that ¢(U) NV is nonempty. Then we may define the composition of ¢, and i by
taking the pair (¢ o ¢, p~1(V)).
Note that in general, we cannot compose rational functions. The problem might be that the image of the
first function might lie in the locus, where the second function is not defined. However there will never
be a problem when ¢ is dominant.

Lemma 1.4.1 Let f : X — Y be a continuous map and U an open subset of Y. Then f~1(U) C
).
Proof. This follows from the fact that f is continuous and f~1(U) C f~1(U).

Lemma 1.4.2 Let X be a variety, Y be an affine variety, ¢ : X — Y be a morphism of varieties and
¢* : O(Y) — O(X) be the corresponding algebra homomorphism. Then

¢(X) =Y ifand only if ¢p* is injective .

L1 homotopy theory, the Whitehead theorem states that if a continuous mapping f between CVW complexes X and Y
induces isomorphisms on all homotopy groups, then f is a homotopy equivalence. This result was proved by J. H. C. White-
head in two landmark papers from 1949, and provides a justification for working with the concept of a CW complex that he
introduced there.
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Proof. Suppose that $(X) =Y, andlet f € k[Y]such that ¢*(f) = 0,i.e fodp =0, then f($(X)) =0
or equivalently ¢(X) C f~1(0). By identifying k[Y] with O(Y), one can see that f is continuous, so
F~1({0}) is a closed subset in Y. Moreover, by assumption, Y = ¢(X), so Y = f~1(0), or equivalently
f = 0. This shows that ¢* is injective. Conversely, suppose that ¢(X) # Y, so that there exists
P e I(¢(X)) with P ¢ 1(Y). Let f = P+ I(Y), then we have ¢*(f) = 0, but f # 0, because
P¢I(Y).

Remark 1.4.2 In particular, if ¢ : X — Y is a rational function, and (U, ¢) is one representative of ¢
and if we assume that Y is an affine variety, then

$(U) = Y ifand only if ¢* : k[Y] — O(U) is injective.
Consequently
¢ is dominant if and only if for any representative (U, ) of ¢, ¢p* : k[Y] — O(U) is injective.

Proposition 1.4.1 Let ¢ : X — Y be a rational function between two varieties, with ¢ dominant.
Then ¢ induces a homomorphism of field extensions of k.

¢ k(Y) — k(X)

Proof. Let (U, ¢) one representative of ¢. The fact that ¢ is dominant implies that ¢(U) N W is
nonempty for any nonempty open subset W of Y. This yields that ¢~ (W) is nonempty in X, and
hence dense.

Let < V,f > be an element of k(Y), then f o ¢ is defined on ¢~1(V), and hence gives an element
< ¢ V), fo¢ > of k(X).

¢ is a homomorphism of fields. One can easily see that this construction yields a homomorphism if field
extension of k ¢~ : k(Y) — k(X).

Proposition 1.4.2 Let X and Y be an arbitrary variety and Y be an affine variety. Any homomorphism
of fields over k, h : k(Y) — k(X) is induced by a dominant rational function ¢ : X — Y.

Proof. Let h: k(Y) — k(X) be a nonzero homomorphism field extensions of k. We want to show that
h is induced by a rational function ¢y : X — Y. For that, consider the restriction hyy : k[Y] —
O(X). Since h is a homomorphism of fields, then in particular, hy(y) is injective.

Let y; := T; + I(Y) be the canonical generators of the k-algebra k[Y|. We have h(y;) € k(X), so we
can write h(y;) =< Uj, f; >, where U; is a nonempty open subset of X, and f; : U; — k is a reqular
function. Since X is a variety, then U := Ni_;U; is nonempty. We have < U, fi >=< U, fju >,
we can write h(y;) =< U,g; >, where g; = f;y. It follows that h(y;) € O(U) for all i. Thus,
h(yi) € O(U). By proposition 1.3.5, hyy| corresponds to a morphism of varieties

(Ph\k[Y] U — Y
x o (h(y)(x),. - hyn) (x))
We have h|k[Y] is injective and h|k[Y] = ((Ph\k[Y])*' so by lemma 1.4.2 (Phlkm(u) =Y. < U, >isa
dominant rational function from X to Y and as one can easily see h is induced by this (dominant) rational

function.

Notation. Let X and Y be varieties. We will consider the following notation :
1) RF(X,Y):= {The set of all rational functions from X to Y }.

7 v: FR(X,Y) —s Hom(k(Y),k(X))
¢ ¢t
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3)
A Homk_alg(k(Y),k(X)) — PR(X,Y)
h — Pn

Theorem 1.4.1 Let X and Y be two affine varieties, then there is a bijection between FR(X,Y) and
Hom_q14 (k(Y), k(X))

Proof. Similar to the proof of proposition 1.3.5.

Definition 1.4.2 We say that a dominant rational function ¢ : X — Y of varieties is bi-rational if it
has an inverse. In this case we say that X and Y are bi-rational (or bi-rationally equivalent) and we write
by X ~bir Y.

Proposition 1.4.3 Let X and Y be two varieties. Then the following statements are equivalent
1) X and Y are bi-rational.

2) X andY contain isomorphic open subsets.

3) The function fields of X and Y are isomorphic.

Proof. One can derive from theorem 1.4.1 that 1)< 3) and clearly 2) implies 1). It remains to prove
that if X and Y are bi-rational, then they contain isomorphic open subsets. Let ¢ : X — Y be a bi-
rational function with inverse ¢ : Y — X. Suppose that ¢ is defined on U, and v is defined on V. Let
W:=¢ 1 (V) C Uandlet f := ¢y. Then f : W — f(W) C V. Note that ¢ o f : W — W is the
identity morphism. Therefore f(W) = ¢~ Y (W) is an open and so y : f(W) — W is the inverse of f.

Example 1.4.1 The projective space IP", and the affine space A" are bi-rationally equivalent.

Corollary 1.4.1 The correspondence X —— k(X) defines an equivalence between the category of vari-
eties over k with morphisms the dominant rational functions and the category of finitely generated field
extensions of k.

1.5 Tangent spaces and singularities

We continue to assume in this section that k is an algebraically closed.

1.5.1 Tangent spaces

In Differential Geometry, tangent spaces at least for smooth manifolds, arise very naturally. The tangent
space at a single point is best described as the collection of possible starting directions one can take when
travelling from that point along the manifold. We will sees in this section that a similar notion does exist
for algebraic varieties. For this, we will start with the definition for affine varieties, and build from that
towards a more general formulation.

Notation. For f € k[Ty,..., Ty and x = (x1,...,xn) € A". The linear map k" — k given by
- of "
def(a) =) ﬁ(x)aj,w = (ay,...,an) €k (1.5)
=194

sends a vector a € k" to the "directional derivative” of f at x along that vector. Thus, for a geometric
interpretation, d, f (a) = 0 precisely for those directions in which f is stationary at x.
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Definition 1.5.1 Let X be a nonempty affine algebraic set, x € X. Let v € k", we say that v is tangent
toa Xat xifdeg(v) =0, forall g € 1(X). The set of all vectors v of k" which verifies this condition is
called the tangent space to X at x. We denote it by T X.

Remarks 1.5.1 1) Let fi,...,fr € k[Ty,..., Tu] be such that I(X) = (f1,...,fr) and let ¢ €
k[Ty, ..., Ty]. For x € X, we have :

Afig) , \ _ ag(x) of; of;
o1, () = 0 T5E + ()57 (1) = g gr () (L6)

Note that an element of 1(X) is of the form Y ;_; fihj where hj € k[Tx, ..., Ty]. So, using (1.6) we
can restrict ourselves in definition 1.5.1 to the case where g describes only the elements f1, ..., fr.

2) Also, we can see the tangent space to X at x as

X = () ker(d:g) Ck".
geI(X)
So, clearly Ty X is k— vector subspace of k™.

3) The tangent space is sometimes called the Zariski tangent space, when it is necessary to distinguish
it from other kinds of tangent.

4) TeX = {(v1,...,00) € K" | Y14 aT( x)v; =0, forall f € 1(X)} = ker(]y), where ]y is the
Jacobian matrix of
Jx = (aTZ( )> 1<i<r, 1<j<n
so, we have dim(TyX) = n — rank(]Jy).
Example 1.5.1 Let X C A? be the affine algebraic set defined by the polynomial
f(TyT) =T; =T}

(1.7)

we have % = —3T?, and g—%; =2T,. So
9f 9 00y =
oT, (0,0) = % (0,0) = 0.
Hence d g f is the zero map. Thus

We have another definition of tangent space in terms of derivations.

Tangent space in terms of derivations

Recall that if M is a real manifold, and p € M, a tangent vector X, in T, M defines a derivation of the
R-algebra C,(M) :
Cp(M) — R
[ Xp(f) =dpf(Xp)

Xy(fg) = Xp(f)g(p) + f(p)Xp(g)

The derivation is actually an R-derivation, since X,(a) = 0 for all constant functions a € R. Using
Taylor’s formula can prove that the tangent space of M at p is actually isomorphic to the vector space of
derivations of C,,(M) with values in R (Cf., [28]) :

(1.8)

In particular, we have

We will see below how algebraic tangent spaces are defined in a similar way :
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Definition 1.5.2 Let X C A" be a nonempty affine algebraic set and D : k[X] — k be a homomor-
phism of k-vector spaces. We say that D is a derivation of k[ X] at x if for all f,¢ € k[X], we have:

D(fg) = f(x)D(8) +8(x)D(f)-
We denote by Dery(k[X]) the set of derivations of k[X] at x.

Remark 1.5.1 One can easily see that Dery(k[X]) is k-vector space.

Note that if m is the maximal ideal of k| X| corresponding to a point x of X i.e., my = {P+I(X) | P(x) =
0}, then up to a field isomorphism, k[ X|m,, for k[X]/my is a field and k is algebraically closed. Note also,
that if we identify k[X] with its canonical image in the localized algebra k[X]y, and so m, the maximal
ideal of k[X]w,, then for the same reason, we have k[X|w /my = k.

Remark 1.5.2 Let (R, m) be a Noetherian local ring and k = R/m, then m/m? is a finitely generated
k-vector space. By Nakayama’s Lemma, dimy(m/m?) is the minimal number of generators of m.

In particular, if we take, R = k[ Jn,, then my /m?2 is a k-vector space. We will denote its dual space, i.e.,
Hom(my/m2) by (my/m2)V.

Lemma 1.5.1 Let X C A" be an affine algebraic set and x be a point of X. Then there exists a homo-
morphism of k-vector spaces from Ty X into Dery(k[X]).

Proof. Let v = (v;)1<j<y) be a vector of € TxX and consider the map

Dy: k[Ty,...,T,] — k

fooo Sy
It is clear that Dy is a homomorphism of k-vector spaces Moreover, we have Dy (fg) = f(x)Dy(g) +
2(x)Dy(f) forall f,g € k[T, ..., Ta]. Also, by definition, for all f € 1(X), we have Dy(f) = 0. So
D, induces a homomorphism of k-vector spaces from k[X].

fo— s
which is an element of Der,(K[X]).
The map

v Dy

is a homomorphism of k-vector spaces. Indeed, we have :

Do+ Aw)(f) = Y o (1) (05 + Awy) = ) S5 (x)oi + A z — Dy(f) +ADu(f), f € KIX].
Lemma 1.5.2 Let X C A" be an affine algebraic set, x € X. Then there exists a homomorphism of
k-vector spaces from Dery(k[X]) into (my/m2)V.

Proof. Plainly, any A € Dery(k[X]) induces a homomorphism of k-vector spaces that we denote also

by A

Let f,g € my, then we have

A(fg) = f(x)A(g) +8(x)A(g) = 0.
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So A induces a homomorphism k-vector spaces :
It’s clear that A, € (my/m2)V. Moreover, one can easily see that

©: Dery(k[X]) — (my/m2)V
A — Ay

is a homomrphism of k-vector spaces.

Lemma 1.5.3 Let X C A" be an affine algebraic set and x be an element of X. x € X. Then there exists
a homomorphism of k-vector spaces from (my/m2)" into Ty X.

Proof. Let T € (my/m2)V and let v; := T(T; — x; +m2), then put v = (v;)1<j<p. Let us show that
v € TyX. For f € I(X) using taylor’s development, we have

n

2 T; — x;) [m?2] (1.9)

:1

hence f +m3 = Ty 51 (x)(T; — x;) + m?.
On the other hand we have

f+I(X) =0ink[X].
Then
f+m2 =0inm,/m.
Therefore,
0 = fv+@)

= T(Z, %uxn—m+m@

= ?18T O)T((T; — x;) +m3)
)
= Yit1 a%( )vi
which means that v € T, X. We get then a the map

r — (Ui)1<i<n

where v; = T(Ti —x; + mfc) One can easily A is a k-vector spaces homomorphism.
Proposition 1.5.1 Let X be a nonempty affine algebraic set of A". Then for any x € X, we have
T X ~ Dery(k[X]) ~ (m,/m2)V

Proof. It suffices to verify that homomorphisms ©, D and A defined in the preceding lemmas are iso-
morphisms of k-vector spaces.

We aim in what follows to define and study the tangent space of any (algebraic) variety.

Definition 1.5.3 Let X be a projective quasi-variety, x be a point of X and m, be the maximal ideal of
Oxy. The tangent space of X at x € X is as

T, X := Homy(my/m2,k) := (m,/m2)V
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Remarks 1.5.2 Let X and Y be two varieties, then we have the following :

1) For any morphism ¢ : X — Y of varieties and any x € X, there is an induced homomorphism of
algebras
(P* : O(P(X) — Oy

which sends the maximal ideal w ) of Oy ) inside the maximal ideal my of Oy, i.e., ¢*(My(y)) C
my. Indeed, let f € my ), then ¢*(f) = fo¢. So, ¢*(f)(x) = f(¢(x)) = 0. We get then an

induced algebra homomorphism
Mg y) /mi(x) — mx/mfc
which dually yields a k-homomorphism of vector spaces

2) Ifg: Y — Zis a morphism and z = g(f(x)), then
T:goTxf = Tx(go f)
3) Ty(idx) = idr,x.
4) If ¢ is an isomorphism, then we have a corresponding (induced) homomorphism of k-vector spaces
Txp: TeX — Tp()Y
is an isomorphism. Indeed, let @ be the inverse of ¢,
To)9 : Tpn)Y — TuX.

Moreover, we have Tyxyp o Txp = Tx(po¢) = Ti(idx) = idr,x, and Txp o Ty =
Tox) (P o @) = Tyx) (idy) = idr, - This shows that Tx¢ is an isomorphisi.

Lemma 1.5.4 If R is a Noetherian local ring with maximal ideal m and let k := R/wm, then dim(R) <
dimy(m/m?).

Proof. See [3, Corollary 11.15].
Proposition 1.5.2 Let X be a variety and x be a point of X. Then
dimy(TyX) > dim(X).

Proof. Let Oy be the local ring of X at x and my be the maximal ideal of Oy. We previously saw that
dim(X) = dim(Oy). Also, by lemma 1.5.4, we have dimy(m,/m2) > dim(Oy). So, dimTy(X) =
dimy(my/m2) > dim(X).

Definition 1.5.4 Let R be a Noetherian ring with maximal ideal m and let k := R/m. We say that R is
reqular if dimy(m/m?) = dim(R).

Definition 1.5.5 Let X be an algebraic set. The dimension of X at a point x, denoted by dim,(X), is
the maximum of the dimensions of irreducible components of X containing x.

Corollary 1.5.1 Let X be an algebraic set and and x € X. Then
dimp(TeX) > dimy(X).
Proof. Let Z be an irreducible component of X containing x. Obviously TxZ C TyX. So
dimy(Z) < dim(TZ) < dimy (T X).

Hence
dimp (T X) > dimy(X).
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1.5.2 Singularities
Definition 1.5.6 Let X C A" be an affine variety of dimension d, and x € X.
i) We say that X is nonsingular (or reqular or smooth) in x if rank [y = n —d.

ii) We say that X is nonsingular it it is nonsingular at all its points.
Notation. We will write Sing(X) := {x € X | x singular }.

Example 1.5.2 Let X = Z(f), where f € k[Ty, Tp]. Then X is nonsingular at x € X if and only if

(52-(x), 5-(3)) # (0,0)

For example let f = T} — T7 and x = (a,b). We have ], = ( 3a> —2b ), so X is nonsingular at x
if and only if (a,b) # (0,0).

Definition 1.5.7 Let X be a variety and x € X.We say that X is nonsingular at x if the local ring Oy
is reqular ring. We say that X is nonsingular if it is nonsingular at every point.

Lemma 1.5.5 Let X be an affine algebraic set of A". For any integer d, the set X; := {x € X | dimy (T X) >
d} is a closed subset of X.

Proof. Let f1,..., fr € k[Ty, ..., Ty| be such that I(X) = (f1,..., fr).
By remarks 1.5.1, we have TxX = (\;_ ker(dx f;) = ker(]x), where

_ (9
Je= (a_ly(x)> 1<i<r, 1<j<n
So dim(TxX) = n — rank(J). Hence

Xy ={x € X|rank(Jy) <n—d}

We know that rank(Jy) < n — d is equivalent the fact that : every (n —d) x (n — d) sub-matrix of Jx
has determinant zero. The determinant of a sub-matrix of |y is a polynomial function, so X is a closed
subset of X.

Corollary 1.5.2 Let x be an affine algebraic set of A™. Then the following statements are equivalent :
i) X is singular at x.
ii) dim(TxX) > dim(X).
iii) The Jacobian matrix | does not have full rank.

Proposition 1.5.3 Let X an be an affine algebraic set of A™. The set Sing(X) of singular points of X is
a closed subset of X.

Proof. By lemma 1.5.4, and proof of lemma 1.5.5 the set of singular points is the set of points where the
rank of the Jacobian matrix is < n — d, where d = dim(X). Thus, Sing(X) is an algebraic set defined
by the ideal generated by 1(X) together with all determinants of (n — d) x (n — d) sub-matrices of the
matrix Jy.

By the above, Sing(X) is a closed subset of X. In what follows, we want that to show that it is a proper
subset of X.
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Lemma 1.5.6 Let X, Y be two varieties and ¢ : X — Y be a bi-rational function. If X admits a
nonsingular point, then so does Y.

Proof. By the above, Sing(X) is a closed subset of X if X has a nonsingular points, then there exists
an open dense subset U C X containing only nonsingular points. Since X ~y,,. Y, then by proposition
1.4.3, there exists two open sets W C X and V C Y so that qb|w : W — V is an isomorphism. So'Y
has a nonsingular points as well (any point of ¢(W N U) well do).

Lemma 1.5.7 Let X be a variety of dimension d. Then X is bi-rationally equivalent to a hypersurface
Ad+L

Proof. See [12, proposition 4.9].
Lemma 1.5.8 Let X be an affine hypersurface, then Sing(X) is a proper closed subset of X.

Proof. Assume that X is an affine subvariety of A" ! and write X = Z(f), with f is irreducible. We
have x € Sing(X) if and only #E?—é(x) =0,forallic{1,...,n+1}.

Sing(X) = X, §—£ € I(X)(= (f)). Note that (f) a prime ideal of k[Ty, ..., Tys1] and and g—jf; has
smaller degree (than f). So, Sing(X) = X if and only if §—£ is the zero polynomial for all i, which means

that So f is constant, a contradiction.

Theorem 1.5.1 Let X be an affine variety. Then the set Sing(X) of singular points proper closed subset
of X.

Proof. By lemma 1.5.7, X is bi-rationally equivalent to hypersurface H in A“*1, so by proposition 1.4.3
there exist open subsets U C X and W C H which U ~ W. As seen in lemma 1.5.8, Sing(H) is a
proper closed subset of H. Therefore Sing(W) is proper subset of W.

1.6 Prevarieties

Affine varieties are special objects in the category T A of topological spaces with distinguished algebras
of reqular functions. In order to define (abstract) algebraic varieties, we have to replace T A with the
category of spaces (space of functions) over k, where one has not only a distinguished sub-algebra Ox on
the entire space X, but for every open subset U of X. In this section, we define this more general category
that we denote by T Ay. We recall that throughout k is an algebraically closed field.

Notation. Let X be a topological space. For any open subset U of X. We pose
Map(U, k) :={f: U — k}

the set of all maps defined on U and with values in k.
Map(U, k) is a k-algebra equipped with the usual laws.

Definition 1.6.1 A space of functions over k is a topological space X together with a family Ox of sub-
algebras over k, Ox(U) C Map(U, k) for every open subset U of that satisfy the following properties:

i) If W, U are two open subsets of X such that W C U, then for any f(€ Ox(U)), the restriction
fiw € Map(W, k) is an element of Ox(W).

ii) Given an open subset U of X and an open cover (U;);c; of U, i.e., U; are open subsets of X such
that U = U U;, together with f; € Ox(U;) such that

fz‘\ul-muj = fj\u,-muj

foralli,j € I. There exists a unique f € Ox(U) such that f;, = f;, for all i.



34

Remark 1.6.1 The space of functions (X, Ox) will often be simply denoted by X.
Examples 1.6.1 1) Let X be a C*-manifold. For any open subset U of X define
Ox(U):={f:U—R|fisC?}

with restriction maps given by restrictions of functions. Then (X, C™) is a space of functions over
R.

2) Let X be a quasi-affine variety, for an arbitrary open subset U of X, let
Ox(U) :=A{f : U — k| fbeing a reqular function}.
Then (X, Ox) is a space of functions.

Definition 1.6.2 (Morphism of space with functions) A morphisms (X, Ox) — (Y, Oy) of spaces
with functions is a continuous map f : X — Y such that for any open subset V of Y, and any
€ Oy(V), wehave po f € Ox(f~HV)).

Notation. We will denote o f by f*1.

Proposition 1.6.1 Let X, Y and Z be spaces of functions over k. Then
1) For any open subset of X, the inclusion map 1 : U — X is a morphism of spaces of functions.
2) The identity is a morphism.

3) Iff: X — Yand g:Y — Z are morphisms of spaces of functions, then g o f is a morphism.

Proof. 1) By definition of the induced topology on U, 1 is continuous. For any open subset V of X
and for any Y € Ox (V) we have for every x € 171(V), 1(x) = x, 50 P o 1(x) = (x). Therefore,
pore Oy (V).

2) By 1) It suffices to take U = X, and we have idx = 1.
3) It is clear that g o f is continuous. Let W be an open subset of Z, and € Oz(W). Then
g € Oy(g™'(W)).

So
fr8"w e Ox(f7H (g™ (W)
Therefore, we get
(8o f)p e Ox((gof) 1 (W)).

Definition 1.6.3 We define the category T Ay, as follows :
x Objects : (X, Ox) where X is a topological space.

* Morphisms : morphisms of spaces with functions.

Remarks 1.6.1 i) If X = U;c; U, is an open cover of X, B; : U; — X are the inclusions, and
f X — Y isany map, then f is a morphism if and only if f o B; is a morphism for all i.

ii) f:(X,0x) — (Y,Oy) is an isomorphism if and only if f is a homeomorphism and for any
open VCY

¢V — kisin Oy(V) ifand only if f*p € Ox(f~1(V)).
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i) If X € A", Z C A™ are two affine varieties, one can easily see that amap h : X — Zisa
morphism in the new sense of definition 1.6.2 if and only if it is a morphism in the sense definition
1.3.3.

Definition 1.6.4 An element (X, Ox) in T Ay is an affine variety if it isomorphic in T A to certain
(Y, Oy), where Y is an algebraic set of some A™.

Notation. Let X be a space with functions and let U C X be an open subspace. We denote by (U, Oxy;)
the space U of functions Oy(W) := Ox (W) := Ox (W), for any open subset W of U.

Definition 1.6.5 A prevariety is a connected space with functions X with a finite open cover by affine
varieties. This is a topological space X with an open cover (U;)cy such that (U;, Oyy,) is isomorphic to
an affine variety.

Remark 1.6.2 Morphisms of prevarieties are just morphisms in T Ay.

Lemma 1.6.1 Let X be a topological space, and X = Uy U - - - U U, be an open cover of X with all U;
nonempty. Then X is irreducible if and only if U; is irreducible for all i, and U; N U, is irreducible for all

i .
Proof. See [26, A.119, p.357].
Proposition 1.6.2 Every prevariety X is an irreducible topological space.

Proof. Immediate, by lemma 1.6.1.

Proposition 1.6.3 Let (X, Ox) be a space with functions. If (X,Ox) is a prevariety, then X is a
Noetherian topological space.

Proof. Write X = Uy U - - - U U,, where (U;, Oy,) are affine. Then U, is Noetherian for all i. Note that
any chain
512852

of closed subsets in X gives a chain
S1NU; 250U 2 -

of closed subsets in U, so there exists m; such that S;N\U; = Sj 1 N Uj for j > m;, whence S; = Sjq
for j > max{my, ..., m}.

Properties 1.6.1 Let (X, Ox) be a space with functions
i) If (X, Ox) is a prevariety, then Oy is subspace of the Cx(U) of continuous functions to k, i.e.,
Cx(U) ={f:U — k| fcontinuous }.

ii) If (X, Ox) is a prevariety and p € Ox(X), then U := {x € X |p(x) # 0} is an open subset of
X, and we have % e Ox(U).

iii) All statements about dimensions of quasi-affine varieties to prevarieties.

iv) If (X, Ox) is a prevariety, then the open subsets of X that are affine form a basis for the topology
of X.
Proof. i) Immediate.

11i) Immediate.

iv) Let {X;} be any open affine covering of X. If U C X is an open subset of X, the sets U; := U N X;
form an open covering of U. The U,’s will not necessarily be affine, but we know that the principals
open sets in X; form a basis for its topology, so are affine varieties. Hence we can cover each of the
U;’s, and thereby U, by affine opens.
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1.7 Normal varieties

In this section, we define the notion of a normal variety that corresponds to normal domains in algebra.
In particular, we show that any nonsingular variety is normal. Along this section, we continue to assume
that k is an algebraically closed field.

Normal rings

Definition 1.7.1 Let R be an integral domain with quotient field K. We say that R is normal if R
coincides with its integral closure in K.

Remark 1.7.1 For more details on normal domains one can see e.g., [3, Chapter 5].

Example 1.7.1 1) A UFD is a normal domain. ([20, Vol I, p.261].)

2) Any DVR is a normal domain.

Proposition 1.7.1 Let R be a domain and K its field of fractions. Then, the following statements are
equivalent.

1) R is normal.

2) S~IR is normal for any multiplicative set of R.
3) Ry is normal for all p € Spec(R).

4) Ry is normal for allm € Spm(R).

Proof. See [23, Proof of theorem 4.1].

Normal varieties

Definition 1.7.2 Let X be an algebraic variety over k and x € X. We say that x is normal if the local
ring Oy is a normal domain. We say that X is normal if all points of X are normal.

Proposition 1.7.2 Let X be an affine variety, then X is a normal if and only if the coordinate ring k[X]
is a normal domain.

Proof. If X is normal, then for all x € X, Oy is normal domain. By theorem 1.3.1, we have k[X |y, ~
Oy, 50 k[X]m, is a normal domain. Recall that wm, describe all possible maximal ideals of k[X] when x
describes all points of X, therefore by proposition 1.7.1 k[X] is a normal domain. Conversely, if k[X] is
a normal domain, then by proposition 1.7.1 k[X]w, is normal for all x € X, hence Ox(~ k[X]w,) is
normal for all x € X. So X is normal.

Examples 1.7.1 1) k[Ty,...,T,] is a UFD so as seen above. Recall that k[Ty,...,T,] = K[X],
where X = A", so by proposition 1.7.2 A" is normal.

2) Let X = Z(Tz — T3) C A2, then X is not normal, indeed we have k[ X] = k[Ty, To) /(T3 — T3) ~
k[T?, T®] which is not an integrally closed domain in its field of fractions k(T?,T?) = k(T).
Indeed, X?> — T? = 0 is an equation of integral dependence of T over k[T?, T], but T ¢ k[T?, T3].
In fact, the integral closure of k[T?, T%] in k(T) is k[T].

Theorem 1.7.1 Let X be a normal variety. Then the ring of reqular functions O(X) is a normal domain.
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Proof. We know that O(X) = Nyex Ox. (intersection taken in k(X)). Thus, the integral closure of
O(X) in k(X) is contained in Nycx Ox (as each Oy is normal), which is equal to O(X).

Remark 1.7.2 Even i O(X) is a normal domain, X need not be normal for general varieties. Indeed,
in example 1.7.1, let X to be the projetive closure of X. It is a projective variety, and thus O(X) = k,
whence it is a normal domain. But, as X not a normal variety, then X cannot be normal.

Theorem 1.7.2 Let X be nonsingular variety, then X is normal.
Proof. Let x € X, by definition the local ring Oy regular, hence a UFD, hence by example 1.7.1.

Remark 1.7.3 There are varieties which have singular points but are still normal. For example X :=
Z(TWT, — T2) is normal and O(0,0,0) is not a regular ring.

1.8 Divisors in algebra

In this section, we introduce the basic definitions and results concerning divisors in terms of places on
rational fields. This will prepare necessary background to give Riemann-Roch result on curves in the
next section. Throughout this section k denotes a field and E an extension field of k.

1.8.1 Places

Definition 1.8.1 Let E be a field and k be a subfield of E. We say E/k is a function field if there is at
least one element x € E that is transcendental over k. The field k is called in this case a constant field of
E. In case E = k(x), we say that E is a rational function field (over k).

Notation. For any field F and any vector space V over F, we denote by dimg(V') or also by [V : F| the
dimension of V over F.

Definition 1.8.2 Let E/k be a field extension. We say that E/k is an algebraic function field in one
variable if there exists a transcendental element x of E over k such that E/k(x) is a finite extension, i.e.,
[E : k(x)] < +oco. We call k the full constant field of E.

Now, we introduce the notions of valuation rings and places in this restricted case of a function field
extension.

Definition 1.8.3 Let E/k be a function field extension. A valuation ring of the function field E/k is a
ring O C E with the following properties :

i) kCOCE.
ii) For every x € E, we have x € O or xleo.

Example 1.8.1 If we take E = k(T), i.e., the quotient field of the polynomial ring k[T], then given an
irreducible monic polynomial q(T) € k[T|, we consider the set

Oyr) = {;% | £(T), g(T) € k[T), 4(T) +g(T)}

~—

then it is easy to see Oyt is a valuation ring of k(T) / k.

Proposition 1.8.1 Let O be a valuation ring of a function field extension E /k and let k be the algebraic
closure of k in E. Then the following hold :
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1) O is a local with maximal ideal M = O\ O*, where O* the group of units of O.
2) For every nonzero element x of E, we have x € M ifand only if x~! € O.
3) For the field k, we havek C O and kN M = 0.

Proof. 1) It suffices to see that O \ O is an ideal of O (so O\ O* is the unique maximal ideal of
0).

2) Assume that x € M. Ifx_1 € O, then we would have 1 = xx~1 € M, which is not true.
Conversely, if x~1 ¢ O, then x € O and x is not invertible in O, so by the above x € M.

3) Let x be a nonzero element of k, and suppose that x ¢ O, then x~' € O. Since x~1 also
algebraic over k, there are elements wq,..., 0 € k with 1+ ...+ ocm(x_l)m = 0. Hence
X Ham(x )"+ .+ ay) = —1, which implies that x = (apu(x™ )" 1+ .. +aq) €
k[x~1] € O. Sox € O, a contradiction. Therefore, k C O. Since all nonzero invertible elements
of k are then invertible in O, then kN M = 0.

Definition 1.8.4 A valuation of E/kisamapV : E — R U {00} satisfying the following conditions.
i) V(x) = ooifand only if x = 0.
ii) V(xy) = V(x)+ V(y) forall x,y € E.
iii) V(x+y) > min{V(x),V(y)} forall x,y € E.
iv) V(E*) # {0}.
v) V(a) =0foralla € k*.

Remarks 1.8.1 i) The symbol co means some element not in R such that co 00 = 00 +m =
m+ 00 = oo, and co > n forall m,n € R.

ii) Note that if V(x) # V(y), we have V(x +y) = min{V(x),V(y) }.

iii) If the image V(E*) is a discrete set in R, then V is called discrete valuation. If V(E*) = Z, then
V is called normalized.

Two discrete valuations V and V' of E / k are called equivalent if there exists a constant A > 0 such that
V(x) = AV (x) forall x € E*.

One can easily to see that this an equivalence relation between the discrete evaluations of E /k. An equiv-
alence class of discrete valuation of E /k is called a place of E/k.

If V is a discrete valuation of E/k, then V(E*) is a nonzero discrete subgroup of (R, +), and so we
have V(E*) = cZ for some positive ¢ € R. Thus, there exists a uniquely determined normalized valu-
ation of E that is equivalent to V. In other words, every place P of E /k contains a uniquely determined
normalized valuation of E /k, which is denoted by Vp. Thus, we can identify places of E /k and (discrete)
normalized valuations of E /k.

For the normalized valuation Vp of E/k we have Vp(E*) = Z. Thus, there exists an element « € E
satisfying Vp(a) = 1. Such an element w is called a local parameter (or uniformizing parameter) of E at
the place P.

Definition and Notation 1.8.1 1) Pg := {P| P is a place of E/k}.
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2) For a place P of E /k, we set
Op :={x € E|Vp(x) > 0}.

We call Op the valuation ring of the place P.
Proposition 1.8.2 Let P € IPg, the valuation ring Op has a unique maximal ideal given by
Mp = {x € E|Vp(x) > 1}

Proof. One can easily see that Mp is an ideal of Op. Since 1 € Op \ Mp , we obtain that Mp is a
proper ideal. It remains to show that any proper ideal I of Op is contained in Mp. Let x € I and suppose
that Vp(x) = 0. Then Vp(x~1) = —Vp(x) = 0, and so x~' € Op. Thus, 1 = xx~! € I and, hence,
I = Op a contradiction. Therefore, Vp(x) > 1and I C Mp.

It is also necessary to understand some of the next result to recall that every valuation of a function field
in one variable is discrete (see [19, Theorem 1.5.12, p.19]).

Definition 1.8.5 Let P € P, Op its corresponding valuation ring and M p the maximal ideal of Op.
The field Ep := Op/ Mp is called the residue class field of P. The canonical map, denoted x — Xp
(make this notation throughout the rest for the residue map images), from E to Ep is called the residue
class map with respect to P. The degree of P, denoted deg(P), is the dimension [Ep : k]. We say that P
is a rational place of E/k if deg(P) = 1.

Lemma 1.8.1 For any place P of E/k, the residue field Ep is a finite extension of k, hence the degree of
P is finite.

Proof. See [19, Theorem 1.5.13, p.20].
Corollary 1.8.1 The field k of constants of E /k is a finite field extension of k.

Proof. Choose some P € Pg. Since k can be embedded into Ep via the residue class map, then [k : k] <
[Ep : k] < ©00.

Proposition 1.8.3 Let E/k be a function field, R be a subring of E with k C R and | a nonzero ideal of
R. Suppose that | is a proper ideal of R, then there is a place P € Pg that | C Mpand R C Op.

Proof. See [29, Theorem 1.1.19, p.71.

Remark 1.8.1 Recall that if E/k is a function field in one variable, then by proposition 1.8.3 above that
the set IPg is nonempty.

Definition 1.8.6 Let P € P and x € E.
i) We say that P is a zero of x if Vp(x) > 0.
ii) We say that P is a pole of x if Vp(x) < 0.
iii) If V(x) = n > 0, we say that P is a zero of x of order n.
iv) If Vp(x) = —n < 0, we say that P is a pole of x of order n.

Corollary 1.8.2 Let E/k be a function field and x an element of E that is transcendental over k. Then x
has at least one zero and one pole.

Proof. Let x € E. Let R = k(x], and the ideal | = xk[x]. By proposition 1.8.3 there exists a place
P € Pg with x € Mp, hence P is a zero of x. The same arqument proves that x ! has a zero P’ € Pg.
So P' is a pole of x.
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Lemma 1.8.2 (Approximation Theorem). Let E/k be a function field in one variable, Py, ..., Py be
distinct places of E/k, x1,...,xm € Eand nq, ..., ny, be integers. Then there is some x € E such that

Vp(x—x;) =njfori=1,...,m.
Proof. See [19, Theorem 1.5.18, p.22].
Corollary 1.8.3 Let E/k be a function field in one variable. Then E /k has infinitely many places.

Proof. Suppose there are only finitely many places, say Py, ..., Py. By lemma 1.8.2 we can find a
nonzero element x € E with Vp,(x) > 0fori =1,...,m. Then x is transcendental over x, since it has
zeros. But x has no pole, this is a contradiction to Corollary 1.8.2.

1.8.2 Divisors

As previously said in the introduction, divisors in algebraic geometry are in extension of divisors in
number field theory. They reveal a large amount of information about the variety in question. In this
section, we define a divisor in terms of places of the considered function field in one variable. In the next
section, considering a curve over an algebraically closed field, the function field of this curve will be a
function field in one variable, and hence one can translate the definitions and results given here to this
geometric case. Many results in the rest of this chapter will allow to retrieve information about zeros,
poles and the structure of functions defined on the variety through the use of divisors. In this paragraph,
E/k will always denote an algebraic function field in (always replace in the rest function field of one
variable by function field in one variable) one variable such that k is the full constant field of E/k.

Definition 1.8.7 The divisor group of E /k is defined as the (additively written) free abelian group which
is generated by the places of E/k, it is denoted by Div(E). The elements of Div(E) are called divisors of
E/k. In other words, a divisor is a formal sum

D= Y npP.
PelPg

where np € Z and np = 0 for all but finitely many np.
A divisor of the form D = P with P € P is called a prime divisor.

Remarks 1.8.2 i) The addition of divisors is defined component-wise :

Z npP + Z mpP = Z (Tlp—l—ﬂlp)P.

PElPE PEPE PePg
ii) For Q € Ppand D = Y gcp, noQ € Div(E), we define Vo(D) := ng.
Definition 1.8.8 (Support of a divisor) Let D be a divisor of E /k. The support of D is defined as
supp(D) := {P € Pg|np # 0}.
It is more convenient to write D = Y pegypp(p) nPP-

Definition 1.8.9 (Degree of a divisor) The degree of a divisor is defined as

deg( Y npP) = Y np-deg(P) € Z.
PelPr PelPr

Obviously, the degree is a group homomorphism deg : Div(E) — Z. Its kernel is denoted by

Div’(E) = {D € Div(E) | deg(D) = 0}.
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Note that a partial ordering on Div(E) is defined by
D <D < Vp(D) < Vp(D') forall P € Pg.

The reflexivity, antisymmetry and transitivity follow directly from the definition.

Remark 1.8.2 Note that this partial ordering on Div(E) is not total in general. Indeed, If we take
E = TF,(x) and

= {15, f(x),8(x) € Fylx], deg (f(x)) < deg(g(x))}
Pu = Px—o = {53, f(x),8(x) € Fg[X], X — arg(x) and X — a| f(x)}

Then D = 4P, — 2Py, and D = P, are not comparable

oQ

Theorem 1.8.1 Let E/k be a function field in one variable, x € E \ k and let Py, ..., Py, be zeros of x.
Then

3" Vi (x) - deg(P) < [E : k(x)].
i=1
Proof. Set n := [E : k(x)]. Suppose that

Y Vi (x) - deg(P) >
i=1

We have x ¢ k, so x is not algebraic over k (since k is a full constant subfield of E). We set n; = Vp,(x)
and V; = Vp, for 1 < i < m. Put O := 1| O; where O; = Op,. By lemma 1.8.2 we can choose
an element y; € E such that V;(y;) = —1 with Vi(y;) = 0 forall jwith 1 < j < m withi # j.
Since [Ep, : k] is finite (as k-vector space), then there exist z;y € O, 1 < t < deg(P;) such that
{zit(P;) }1 <t<deg(P) forms a k—basis of the residue class field Ep,. In order to arrive at a contradiction,

it suffices to show that zity{ € E(1 <t <deg(P),1<j<mn;l<i<m)arelinearly independent
over k(x). Suppose there is a nontrivial combination, then it can be written as :

m N . m N .
Yo ) mgyi+x) Y ay; =0 (1.10)
i=1j=1 i=1j=1

where 11;;,a;; € O, either n;; = 0 or Vp,(1;;) = 0 and the latter case occurs for at least one pair (i, f).
Now, let d such that
VPd(mj) =0, for some jwith1 < j < ny.

Then
m N .
Ve (1 3 miyi) < 0.
i=1j=1
and
m 1N .
Vp,(x ) ) aijy)) =0
i=1j=1

a contradiction.

Corollary 1.8.4 Let E/k be a function field in one variable. Then every nonzero element x € E has only
finitely many zeros and poles.
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Proof. Let x be a nonzero element of E. If x € k , x has neither zeros nor poles. If x € E \ k, then x is
transcendental over k, so by theorem 1.8.1, the number of zeros is finite. The same arqument shows that
x~! has only a finite number of zeros, so x has a finite number of poles.

Definition 1.8.10 (Effective divisor) A divisor D = Y pcp, npP is called effective (or positive) at P if
np > 0and D is called effective if it is effective at each P.

Definition 1.8.11 (Zero divisor, pole divisor and principal divisor) Let 0 # x € E and denote by Z
(resp. P) the set of zeros (resp. poles) of x in Pg. Then we define

i) The zero divisor (x)g of x by
(x)o = Z Vp(x)P.

pPeZ
ii) The pole divisor (x)eo 0f X by
(x)eo = ) (=Vp(x))P.
pePpP
iii) The principal divisor of x by
(%) = (¥)o = (*)oo-
Remark 1.8.3 Clearly (x)g > 0, (x)oo > 0and

(x) = )_ Vo(x)P. (1.11)

PePg

Sometimes the principal divisor of x is denoted by div(x). Obviously, div is a group homomorphism
div : E* — Div(E).

Definition 1.8.12 The group
Princ(E) := {div(x) |0 # x € E}
is called the group of principal divisors of E /k. The quotient group
CI(E) := Div(E)/Princ(E)

is called the divisor class group of E/k. Two divisors D and D' belonging to the same residue class
of CI(E) are said to be equivalent, we write D ~ D'. This means that D' = D + div(x) for some
x € E\ {0}.

1.9 Curves and Riemann-Roch Theorem

In this section we introduce a fundamental space attached to the study of divisors on a function field
in one variable, the so-called Riemann-Roch space. A space that is in particular well known in modern
geometric coding theoryand also in cryptography. We also introduce the notion of an adéle space and
genus of such function field and Weil differentials. As the reader can see, all these notions are part of
algebraic number field theory and apply very well in the case of a (smooth) algebraic affine curve via its
rational function field.
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1.9.1 Curves

Let us start by giving the definition of algebraic curves. Unless otherwise mentioned, we continue to
assume in the rest of this chapter that k is an algebraically closed field.

Definition 1.9.1 Let X be an algebraic variety over k. We say that X is an affine (resp. projective)
algebraic curve if dim(X) = 1.

Notation. Sometimes we will denoted the algebraic curve X over a field k by X /k.

Example 1.9.1 Let f(X,Y) be an irreducible polynomial in two indeterminates coefficients in k Then
the graph in k* which is defined by the equation f(X,Y) = 0 is an algebraic curve.

Let R be a local domain of dimension one with maximal ideal wm and let h := R/wm. Recall that R is a
discrete valuation ring if and only if dimy(m/m?) = 1.

Proposition 1.9.1 Let X C A" be an affine algebraic curve and x € X. Then X is smooth at x if and
only if Oy is a discrete valuation ring.

Proof. Note that X is nonsingular at x if and only if the local ring Oy is reqular ring . Moreover, since
X is an affine curve, then dim(Oy) = dim(X) = 1 (see theorem 1.3.1 iii)). So X is smooth at x if and
only if Oy is a valuation ring.

Proposition 1.9.2 Let X be an affine algebraic curve. Then the set of singular points is a finite proper
closed subset of X.

Proof. We already saw in theorem 1.5.1 that the set of singular points of X is a proper closed subset of
X. It is finite by [19, Theorem 3.1.7, p.71].

Remark 1.9.1 For more details on nonsingular curves, we refer to [19, Chapter 3].

1.9.2 Riemann-Roch Theorem

In this subsection, we fix an algebraic function field in one variable E/k. As the reader can see, most
results in this section do not need the field k to be algebraically closed. Nevertheless, since k is a full
constant field of E, then k is algebraically closed in E.

The vector space L(D)
Let D be a divisor of E/k, let
L(D):={x € E*|div(x)+ D > 0} U {0}.

One can easily see that L(D) is a k-vector space. This space is called Riemann-Roch Space. It dimension
over k will be denoted by 1(D), i.e., (D) := dimy(L(D)).
For any divisor of E, we have x € L(D) if and only if Vp(x) > —Vp(D) for all P € PE.

Proposition 1.9.3 Let D, D be two divisor of E /k. Then :
1) For the zero divisor 0, we have L(0) = k, and 1(0) = 1.
2) If D < D', then L£(D) is a subspace of £(D') and dim(L(D")/ L(D)) < deg(D") — deg(D).
3) IfD >0, then (D) > 1.
4) 1(D) is finite for all D.
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5) For any element x € E, we have 1(D + div(x)) = I(D).

Proof. 1) Forany x € k*, we have div(x) = 0. So div(x) +0 > 0, then k C L(D). Conversely,
if x € L(D) \ {0}, then div(x) > 0. This means that has no pole, so x € k by corollary 1.8.2.
Moreover, 1(0) = dimy(L(0)) = dimy (k) = 1.

2) Assume that D < D', let x € L(D), then div(x) + D' = div(x) + D+ (D' — D) > 0. So
x € L(D"). For the second assertion we can assume that D' = D + P for some P € Pg, the
general case follows then by induction. Choose an element xo € E with Vp(xg) = Vp(D') =
Vp(D) + 1. For x € £(D') we have Vp(x) > —Vp(D') = —Vp(xg), s0 xxg € Op. Thus we
obtain a k-linear map

®: £(D) — Ep
X > XXop

For an element x € E, we have x € ker(®) if and only if Vp(xxg) > 0, i.e.,, Vp(x) > —Vp(D).
Hence ker(®) = L(D) and ® induce a k-linear injective mapping fromL(D")/L(D) to Ep. So
dimi(L(D")/L(D)) < dim(Ep) = deg(P) = deg(D) — deg(D).

3) By 1) and 2) we know that k = L(0) is a subspace of L(D). So 1 =1(0) < I(D).

4) Assume that D > 0. Then applying 1) and 2), we get 1(D) = dimp(L(D)/L(0)) +1 <
deg(D) 4+ 1. So I(D) < +oo. If D is arbitrary, then it suffices to consider some positive divisor
D' such that D < D' and to conclude.

5) Let D € Div(E) and let x € E. Then one can easily see that L(D) = xL(D + div(x)).
Since xL(D + div(x)) and L(D + div(x)) have the same dimension over k, then we have (D +
div(x)) = 1(D).

Remark 1.9.2 5) implies that if D' is a divisor equivalent to D, then 1(D) = 1(D").
Lemma 1.9.1 Let D € div(E), if D = D — D_ with positive divisors D and D_, then

(D) <deg(Dy+)+1
Proof. Since L(D) C L(D+), it is sufficient to show that

I(Dy) < deg(Dy) + 1.

But this by what we have already shown (See the proof of 4) in proposition 1.9.3.
Remark 1.9.3 It follows by the above lemma that if D > 0, then we have

(D) <deg(D)+1 (1.12)
Proposition 1.9.4 All principal divisors have degree zero. More precisely, let x € E \ k, then we have

deg((x)o) = deg((x)eo) = [E : k()]

Proof. Set m := [E : k(x)] and D := (X)o = Yj_q —Vp,(x)P; where Py,..., P, are all the pole
of x. Then deg(D) = YI_; Vp(x71) -deg(P;) < [E : k(x)] (see theorem 1.8.1). Conversely, let
m := [E : k(x)] and let’s show that m < deg(D). For this let's choose a basis B1, . .., Bm of E/k(x) and
a divisor G > 0 such that div(p;) > —G fori =1,...,m. We have

I(tD+G) > m(t+1) forall t > 0.
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which follows immediately from the fact xi,B]' € LtD+G)fori=0,...,1r,j=0,...,m. Setd =
deg(G), we get m(t +1) < I1(tD + G) < tdeg(D) +d + 1 by lemma 1.9.1. Thus

t(deg(D) —m) >m—d—1 (1.13)

forall t € IN, the right hand side of (1.13) is independent of t, therefore (1.13) is possible only when
deg(D) > m. We have thus proved that deg((x)e) = [E : k(x)]. Since (x)o = (x™1)eo, we conclude
that deg((x)o) = deg((x Vo) = [E : k(x~1)] = [E : k(x)].

Corollary 1.9.1 Ifdeg(D) < 0, then (D) = 0.

Proof. Assume that deg(D) < 0 and suppose that there is some nonzero x € L(D), then by definition
deg(div(x) + D) > 0, but by applying proposition 1.9.4 and the fact that deg is a group homomorphism,
we have deg(div(x) + D) = deg(D)(< 0). It follows then that L(D) = {0}, so (D) = 0.

Adeéles

Most results here are true for an arbitrary function field E / k.

Definition 1.9.2 An adele of E /k is a mapping

lB:IPE—>E
Pl—>‘3p

such that Bp € Op for all but a finite number of P € Pg. We may regard an adele as an element of the
direct product [ [pep, E and therefore use the notation p = (Bp)pep,-
The set

Ar = {B| Bisan adele of E/k}

is called the adele space of E /K. The principal adele of an element x € E is the adeéle whose components
are equal to x. This gives the diagonal embedding x — (x,x,x,...), from E to Ag.

Remarks 1.9.1 i) Af is a vector space over k.

ii) The valuations Vp of E/k extend naturally to Ag by setting Vp(B) := Vp(Bp) (where Bp is the
P-component of the adele B). By definition 1.9.2 Vp(B) > 0 for all but finitely many P € Pg.

Definition 1.9.3 For any divisor D = ) pcp, npP, we define
Ag(D):={B € A |Vp(B) +Vp(D) > 0forall P € Pg}.
Obviously this is a k-subspace of Af.

For divisors D = Y pep, npP and D = Y_pep, MmpP, we define min{D, D'} := Ypep, min{np,mp}P,
and max{D,D'} := Y_pep, max{np,mp}P

Proposition 1.9.5 Let D = } pcp, npP and D = Ypcp, mpP. Then, the following statements hold:
1) IfD < D', then Ag(D) C Ag(D') and
dim(Ag(D')/Ap(D)) = deg(D') — deg(D).
2) Ap(min{D,D'}) = Ag(D)NAg(D").

3) Ap(max{D,D'}) = Ap(D)+ Ag(D").
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Proof. 1) If D < D', then by definition, mp > np for all P. Let (Bp)p, € Ag(D) then
Vp(Bp) +mp > Vp(Bp) +np >0, forall P € Pg.

Thus (Bp)pep, € Ag(D"), which shows that Ap(D) C Ag(D'). Let's prove the rest by induc-
tion on deg(D') — deg(D).

« Ifdeg(D") = deg(D), then necessarily D = D' (for D < D'), s0o Ag(D') = Ag(D), hence
Ag(D')/Ag(D) = {0}.

« For the rest of the induction, it suffices to consider the case where deg(D') — deg(D) = 1,
D' = D + P for some place P. Choose x € E, with Vp(xq) = Vp(D') = Vp(D) + 1 and

consider the k—linear map ® : Ag(D') —> Ep defined by p — xoBp p, Which is surjective
with kernel ker(®) = Ag(D), and so

dim(Ag(D")/Ag(D)) = dim(Ep) = deg(P) = 1.

2) Since min{D,D'} < D,D’, then by 1), Ag(min{D,D'}) C Ag(D)NAg(D"). Conversely, if
(B) € Ap(D) and (Bp) € Ap(D"), then for any P € P,

Vp(Bp) +np > 0and Vp(Bp) +mp >0
Thus, we have
Vp(Bp) + min{np, mp} > 0.
Therefore
Ar(D)NAE(D') = Ap(min{D,D'}).

3) We have D,D’ < max{D, D'}, so by 1), Ag(D) + Ag(D") C Ag(max{D,D'}). Conversely,
for (Bp) € Ag(D), (ap) € Ag(D"), if Bp = —ap then one can conclude easily. For arbitrary
case, we have Vp(Bp + ap) > min{Vp(Bp), Vp(ap)}. Thus for all places P,

Vp(Bp + ap) + max{np,mp} > min{Vp(Bp), Vp(ap)} + max{np, mp}

and
min{Vp(Bp), Vp(ap)} + max{np,mp} > 0.

Lemma 1.9.2 Let D, D’ be two divisor of E/k, if D < D'. Then
dimy ((Ag(D') + E)/(Ag(D) 4 E)) = (deg(D") — (D")) — (deg(D) — I(D)).

Proof. We have an exact sequence of linear mappings
0 —— £(D")/L(D) — Ap(D')/Ap(D) 2 (Ag(D')+E)/(Ag(D) +E) — 0

Y1, 72 are defined in the obvious manner. The only nontrivial assertion is that the kernel of 7y, is contained
in the image of y1. In order to prove this let B € Ag(D') with y2(B + Ap(D)) = 0. Then p €
Ag(D) + E, so there is some xo € E with p — xg € Ag(D). As Ag(D) C Ag(D'). We conclude
that xo € Ag(D')NE = L(D"). Therefore 4+ Ag(D) = xo + Ag(D) = 71(x0 + L(D)) lies in the
image of 7y1. From the exactness of the above sequence, we get that

/

dimy((AE(D') + E)/Ap(D) +E)) = dim(Ag(D)/Ap(D)) —dim(L(D')/L(D))
= (deg(D) = (D)) — (deg(D) — (D))

In the second equality here, we used proposition 1.9.5 1).
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For any divisor D of E / k, we define
r(D) :=deg(D) —I(D).
We obtain a map r : Div(E) — Z. We have then the following lemma :
Lemma 1.9.3 Let x € E* and D, D' be two divisors on E. The following statements hold :
i) IfD < D, thenr(D) < r(D)
ii) r(div(x) + D) = r(D).
Proof. i) This follows from lemma 1.9.2.

ii) By proposition 1.9.3 5)
I(D +div(x)) = I(D).
Moreover, we have deg (div(x) + D) = deg(D) 4 deg(div(x)) and by proposition 1.9.4 deg(div(x)) =
0. So r(div(x) + D) = deg(D) — I(D).

Proposition 1.9.6 Let E/k be an algebraic function field, r(D) has an upper bound, when D describes
the divisors of E/ k.

Proof. See [22, Theorem 4.10, p.15].

Genus and the Riemann’s theorem
Definition 1.9.4 (genus) Let E /k be a function field in one variable, the genus of E is defined as
g =1+ maxp(r(D)).

i.e., g is the last integer for which
deg(D) —I1(D) < g—1.

holds for any divisor D of E/k.
Proposition 1.9.6 (with this definition) gives a proof to the following famous Riemann’s Theorem.

Theorem 1.9.1 Let E /k be an algebraic function field, then there exists a nonnegative integer g depend-
ing only on E such that
I(D) >deg(D)+1—g (1.14)

for every divisor D of E.

Proof. Clear.

Corollary 1.9.2 There exists an integer ¢ depending only on E such that
I(D) =deg(D)+1—g

for any divisor D of E /k satisfying deg(D) > c.

Proof. Let D and Dy be two divisors of E/k with g = 1+1(Dy). Set ¢ := deg(Dy) + g. Ifdeg(D) > ¢
and applying theorem 1.9.1 we obtain

I(D—Dy) >deg(D—Dy)+1—g>c—deg(Dg)+1—g=1.

Thus there exists a non-zero element z in L£(D — Dy). Let the divisor D' := div(z) + D, which > D,
We have ,
deg (D) —1(D) deg(D) — (D)

> deg(Do) —I(Do) =g —1
Hence (D) < deg (D) +1—g.
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Corollary 1.9.3 Let D be a divisor such that deg(D) > c where c is the constant in corollary 1.9.2, we
have

AE(D) + E = Akg.

Proof. By lemma 1.9.2
dimy((Ag(D') + E)/Ap(D) +E)) = r(D') — r(D)

for any divisors D' > D, by corollary 1.9.2 deg(D) > c implies r(D) = ¢ — 1. Thus if deg(D’),
deg(D") > c, then
Ap(D)+E=Ag(D)+E

For any divisor D = Y_p npP with deg(D) > c and for any adele (Bp), define G := max (D, —div(Bp)).
Therefore, G > D, deg(G) > deg(D) > c. By the above we get Ar(G) + E = Ag(D) + E. We have
also (Bp) € Ap(—div(Bp)) € Ar(G) C Ar(G)+E = Ag(D) + E. If deg(D) is large enough,
then any adele is in Ag(D) + E and we have Ag O Ag(D) + E since Ag(D) and E are both subsets
of the adéles under the diagonal embedding. Thus

AE(D) + E = Akf.

In the case of an algebraic function field E / k, we already defined its genus, so by the same way we define
the genus of an algebraic nonsingular projective curve as :

Definition 1.9.5 The genus of a nonsingular projective curve X over k is defined to be the genus of its
k-rational function field k(X).
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Chapter 2

Introduction to Schemes

In this chapter we aim to present basic background of scheme theory. The material developed her covers
elementary definitions and properties and is oriented in order to prepare necessary tools to understand the
meaning of Severi-Brauer varieties in the third chapter. In particular, we will study some local and global
properties of schemes like the notions of reduced, integral, reqular, normal, separated, proper, projective
schemes. We will also study modules over schemes, some cohomological interpretations in scheme theory
and introduce Weil and Cartier divisors.

2.1 Generalities on sheaf theory

Sheaves are tools which allow us to keep track of local information on a topological space in a single math-
ematical object. Their use is ubiquitous throughout algebraic geometry. In this section, we will study
their basic theory. We present the notions of presheaf and sheaf on a topological space, that of morphisms
of presheaves, as well as their first properties : injectivity and surjectivity, exact sequences. We then
study the direct image and inverse image functors, which allow to pass from a sheaf on a topological
space to a sheaf on another space and which play a fundamental role in the study of the schemes. Finally,
we end with the study of the gluing of bundles

Notation. Let X be a topological space. We will denote by Tx the category having for objects the open
subsets of X and for morphisms identity maps and inclusions. Also, C will denote a category, which can
be the category of sets (also denoted by Set), that of groups (also denoted by Gp), that of R-modules (also
dented by R-Mod), that of R-algebras (also dented by R-Alg), for some ring R.

2.1.1 Presheaves

Definition 2.1.1 Let X be a topological space. A presheaf F (of sets) on X consists of the following deta:
i) For every open subset U of X, a set F(U).
ii) Whenever U C 'V are two open subsets of X, a map
resy 2 F(V) — F(U)
called the restriction map, which satisfies the following conditions :

a) resyu = id gy
b) Having three open subsets U C V. C W of X, then resy i1 o resy v = resw i

Remarks 2.1.1 1) We will mostly write s for s when s € F(U). The elements of F(U) are
usually called sections of (the presheaf F) over U.
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2) By considering F(U) as an object in some category C and assuming that resy iy is a morphism
between the objects F (V') and F(U), we may define more generally a presheaf F on X into C.
Note that we can state definition 2.1.1 in the following way : Let X be a topological space. A
presheaf F on X (into a category C) is a contravariant functor from Tx into C.

F: Tx — C
u — F(U)

Examples 2.1.1 1) For a topological space, a presheaf Cx of R-algebras on X is defined by assigning
to every open U C X the set of continuous functions U — R.

2) Let X be a variety, we previously considered the presheaf of k-algebras Ox. For any open U C X,
Ox(U) is the k-algebra of reqular functions. If X be an affine variety we have Ox(U) = k[U].

3) Let X be a topological space, the formula :

Z if Uu=Xx
U= { {0} otherwise
defines a presheaf of abelian groups on X.

Although it is possible to define a presheaf of a topological space X into an arbitrary category C, we will
be interested in what follows only in cases where the objects of C are sets (that could have an additional

structure) and the morphisms resy 1 are maps (which are morphisms for the extra structure on F (V)
and F(U).

Definition 2.1.2 Let F be a presheaf on X, a subpresheaf G (of F) is a presheaf on X such that G(U) C
F(U) for every open U C X, and such that the restriction maps of G are induced by those of F.

Example 2.1.1 If U is an open subset of X, every presheaf F on X induces, in an obvious way, a presheaf
Fu on U by setting F (V) = F(V) for every open subset V of U. This is the restriction of F to U.

Morphisms of presheaves

Definition 2.1.3 Let F and G be two presheaves on X. A morphism of presheaves ¢ from F to G
consists of the datum, for all open U of X, of a morphism p(U) from F (U) to G(U), so that the diagram

Fv) — M gy
F(U) —— 5 6(U)

commutes for any pair (U, V') of open subsets of X such that U C V.

Remarks 2.1.2 i) The commutativity of the diagram is written : p(V)(s);y = $(U)(s|y), for
every s € F(V).

ii) Morphisms of presheaves can be composed. So that presheaves on the topological space X form a
category, that we will denote by PreShyx.

iii) A morphism i : F — G between two presheaves F and G is an isomorphism if it has a two-sided
inverse i.e, a morphism ¢ : G — F such that o ¢ = idg and ¢ o = idr.
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Definition 2.1.4 Assume C has direct limits. The stalk of a presheaf F at a point x € X is

Fy = lim F(U)

xel

The direct limit is taken over open neighborhoods of x, and restriction maps between them. Given a
section s € F(U), and a point x € U, we let s, € F denote the image of s under the natural morphism

FU) — Fx
S —> Sy

An element of the stalk is called a germ.
More generally, if Y C X is a closed and irreducible subset. Then, we set

Fy:= lim F(U)
UNY£D

Notation. Let X be a topological space and x € X, we denote by V the set of open neighborhoods of x,
which is filtering for the opposite order to inclusion i.e, for all U,V € V we have

U<V VCLU.

Remark 2.1.1 We can identify Fy as the quotient of the set of pairs (U, s), where U € V and where s
is a section of F on U, by the relation of equivalence defined as follows :

(U, s) ~ (V,t) if and only if there exists an open neighborhood W of x in U NV such that sy = t)y.

Moreover, we can see Fy as the set of sections of F defined in the neighborhood of x. Two sections
belonging to JFy being considered as equal if they coincide in some neighborhood of x.

Example 2.1.2 Let F(U) = { continuous functions U — R}. Then F the set of germs of continu-
ous functions at x.

Proposition 2.1.1 Let ¢ : 7 — G be a morphism of presheaves, then 1 induces for every point x € X
a morphism Wy : Fx — Gy between the stalks, where yy is defined by Px(sx) = ((U)(s))  for any
open subset U of X, s € F(U), and x € U.

Proof. If s € F(U) and t € F(V) are such that sy = ty, then there exists an open neighborhood
W of x such that sjy = tj. So p(U)(s)jw = Y(W)(sjw) and p(V)(t)w = (V) (fw). Hence
(p(U)(s)), = (V) ().

Note that if ¢ : F — G and ¢ : G — Z are two morphisms of sheaves we have () o ¢)x = Py © Py
and (idr)x = idx,. Moreover,  — 1y define a functor from the category of sheaves over X to the
category C.

Definition 2.1.5 Let ¢ : F — G be a morphism of presheaves
i) We say that  is injective if for any open subset U of X, p(U) : F(U) — G(U) is injective.

ii) We say that  is surjective if for all x € X, Py : Fx — Gy is surjective.
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2.1.2 Sheaves
Definition 2.1.6 We say that a presheaf F is a sheaf if we have the following properties :

i) (Uniqueness) Let U be an open subset of X, s € F(U), {Ui}l. o @ covering of U by open subsets
Uj. If sy, = 0 for every i € I, then s = 0.

it) (Gluing axiom) If U = Uje; U;, and if s; € F(Uj;) is a collection of sections matching on the
overlaps; that is, they satisfy

Si\ulﬂu]- = S]"Uif\luj'

foralli,j € I, then there exists a section s € F (U) so that s, = s;, foralli € 1

Remarks 2.1.3 1) When F is a presheaf of groups or of an algebraic structure that is in particular a
group, we can replace 1) by : for all s, t € F(U) such that for i € 1, sy, = tyy, then s = t.

2) The section s in ii) is unigue by condition i).

Examples 2.1.2 1) Let X be a topological space and F : U — C°(U,R) the correspondence that
assigns to U the R-algebra of continuous maps from U to R, then F a sheaf of R-algebras over X.

2) In example 2.1.1, if moreover, F is a sheaf then F | is still a sheaf.

Morphisms of sheaves

Definition 2.1.7 A morphism of sheaves is just a morphism of the underlying presheaves.

Remarks 2.1.4 1) The sheaves of X form a full subcategory Shx of the category of the presheaves on
X.

2) The notions injective, surjective and isomorphism for sheaves are defined in the same way as for
presheaves.

Lemma 2.1.1 Let X be a topological space and let U be an open subset of X.

i) Let F be a sheaf on X and let s,t € F(U) be two sections such that sy = ty for every x € U.
Then s = t.

ii) Let F, G be presheaves on X and let ¢, ¢ : F — G be morphisms of presheaves on X such that
Fx = Gy forevery x € X. If G is a sheaf, then F = G.

Proof. i) Let x € U, since sy = ty, there exists an open subset Wy of U containing x such that
S\w, = tjw,- Since (Wx)y is an open covering of U, according to condition i) in definition 2.1.6, it
comes that s = t.

it) Let W be an open subset of X and let s € F(W). We need to prove that s has the same image
under the maps Y(W) and ¢p(W), let t = p(U)(s) and | = ¢(U)(s). For all x € W, we have
ty = Wy(sx) = ¢x(sx) = lx. Since G is a sheaf, then by i) we get that t = I.

In what follows, we consider (pre)sheaves of objects with algebraic structures which in particular are
groups.

Proposition 2.1.2 Let i : F — G be a morphism of sheaves. Then  is injective if and only if
Py + Fx — Gy is injective for every x € X.



53

Proof. Suppose ¢ is injective. Let x € X and s, € Fy such that P, (sy) = 0, where s € F(U) and U
is an open neighborhood of x, so (p(U) (s))x = 0. Then, there exists an open neighborhood W of x such
that Y (U)(s)|w = 0 or that Y(W)(s|w) = 0. From the injectivity of i it comes that sy, thus sy = 0.
Conversely, suppose that for all x € X, . is injective, we fix an open subset V of X and s € F (V)
such that Y(V')(s) = 0, locally we have, for all x € V, x(sx) = (¢(U))(s)) . = 0, it comes from local
injectivity, that for all x € V, sy = 0. Hence s = 0.

Remark 2.1.2 Proposition 2.1.2 gives a local characterization of the injectivity.

Theorem 2.1.1 Let ¢ : F — G be a morphism of sheaves. The following assertions are equivalent :
i) P is an isomorphism.
ii) For every x € X, ¢y : Fx — Gy is an isomorphism.
iii)  is both injective and surjective.

Proof. i) = ii) Let ¢ be the inverse morphism of . Plainly, for every x € X, we have ¢y o Py = id r,
and Py o ¢ = idg_. S0 Py is an isomorphism.

ii) = iii) Immediate, according to proposition 2.1.2 and definition 2.1.5 ii)

iii) = i) We will construct the inverse ¢ of . Let W be an open subset of X and t € G(W), for
every x € W, there exists Uy an open neighborhood of x and s* € F(Uy) such that t, = v,bx( ¥) =
(¥(Uy)(s)),- Hence there exists Ve € Uy N'W neighborhood of x such that t, = (¢(Vy)(s" sty )) v

Ify € W, then (Ve N V) (s |va) = (Ve N V,)(s! v, mv) 50 s}y, A, = S|nyﬁVy’ as the family
(Vi) xeu forms a covering of U, then (s*)y rises to a section s of Fonl, and we have Y(U)(s) = t, the
uniqueness of s follows from the injectivity of . We set ¢(U)(t) = s, then ¢ is the inverse of .

Sheafification
In this paragraph, we answer the following question : How to build a sheaf from a presheaves?

Definition 2.1.8 Let F be a presheaf on a topological space X. We call associated sheaf with F any sheaf
F equipped with a morphism of presheaves B : F — F' satisfying the following universal property :
For any morphism of presheaves ¥ : 7 — G, where G is a sheaf, there exists a unique morphism of
sheaves  : F' — G such that the following diagram is commutative :

F—"' g
B -

¥
f_"l'

Remark 2.1.3 The uniqueness of F' when it exists is an immediate consequence of the universal prop-
erty.

Proposition 2.1.3 Let F be a presheaf on a topological space X. Then the sheaf F' associated with F
exists and is a unique up to isomorphism. Moreover, using the above notation, all x € X, the induced
morphism B : Fy — Fi is an isomorphism.

Proof. Let F be a presheaf on X. Consider Z := [l,cx Fx (disjoint union) and consider the map
7. Z — X defined by : for all sy, 7t(sy) = x. For any open V of X and s € F(V), let 75 be the map
75« V. — X defined by 715(x) = sy. Note that n(ns(x)) = xiemo s = idy (715 is a section and 7w
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is a retraction). We now endow Z with the topology which makes all maps 75 : V. — Z, V open subset
of Xand s € F(V), continuous.

For any open subset V of X, we define F7 (V) := {g : V — Z/g continuous and wo ¢ = idy} it is
the set of sections of Z on V.

+ For every W C V, the restriction F' (V) — F'(W) is the usual restriction, i.e g — gy, In
particular F' is a presheaf.

* Condition 1) in definition 2.1.6 is immediate.

« If (Wj); is a covering of V and gj € F'(Wj) are such that for all i, ], Silw,nw, = &jjw,nw,, then
as the gj are continuous, and coincide on the intersections, there exists g : V. — X which is
continuous such that for all j, S\w;, = 8j- Moreover g is a section in fact : for all x € V, there is

some j such that x € Wj, mo g(x) = mt(g(x)) = m(gj(x)) = x.
Flis a sheaf.

* Definition of B : F — F : For any open subset V of X and s € F(V), we define B(V)(s) :=
s € FT(V).

« Compatibility with restrictions : let W C V two open subsets of X, s € F(V) and x € W, we
have B(V')(s)w (x) = 75(x) = sx = (sjw)(x) = g (x). So B(V)(s)jw = B(W) (syw)-

* Let G be a sheaf, and ¢ : F — G be a morphism of presheaves. We cut a section g of F' (V) into
small sections (sections of F) on a covering W; of V, then by sending them to the G(W;), then we

stick back into G. Sections of F' are obtained by gluing sections of F, so Fy = Fi.
Remark 2.1.4 If F is a sheaf, it follows from the universal property that F ~ FT.

Example 2.1.3 (Constant sheaves) Let A be a group (or a ring, an algebra,. . .), then

A if U+Q

U— { {0} otherwise

is a presheaf and the associated sheaf is called the constant sheaf associated to A. We denoted by A. For
any x € X, we have A, = A.

Subsheaves and Quotient sheaves

Throughout, we fix a category of objects that have an algebraic structure which are in particular groups,
say e.g., C = Gp or R-Mod.

Subsheaves

Definition 2.1.9 Let F and G be two sheaves on X, we say that F is a subsheaf of G, if for any open
subset U of X, F(U) C G(U) and such that we have compatibility with the restrictions induced from
Fand G, i.e., For every open subsets U C V of X, the following diagram is commutative :

Remark 2.1.5 F is a subsheaf of G if, the canonical injection 1 : 7 — G is a morphism of sheaves.



55

Definition 2.1.10 Let ¢ : F — G a morphism of presheaves on X. We define the presheaf ker(¢) by
the formula :
U — ker(yp(U))

for any open subset U of X. ker (1) is said to be the kernel of ¥, it’s a subpresheaf of F.

Using the notation of definition 2.1.10, one can easily see that  is injective if and only if its kernel is the
trivial presheaf.

Lemma 2.1.2 Let ¢ : F — G be a morphism of sheaves. Then the presheaf ker (1) is a sheaf.

Proof. Let U bean open of X, (U;); be a covering of U and s; € ker(y(U;)) such that for i, j, Sijunu; =
Sjju;nu;- Since sj € F(Uj), then (s;); rises to a section s of F over U, but for every x € U, there exists
j such that x € Uj, and we have (Y(U))(s)x = (p(U;))(sj)x = 0. So p(U)(s) = 0. Hence
s € ker(¢(U)). On the other hand, if s € ker(yp(U)) such that for every j, S, = 0, then's = 0
(because s € F(U) and F is a sheaf).

Definition 2.1.11 Let ¢ : F — G be a morphism of presheaves on X. We define the im () presheaf
by the formula :

for any open set U of X. One can easily see that im () is indeed a subpresheaf of G. We say that im ()
is the image presheaf of 1.

Remark 2.1.6 Note that the presheaf im () is not in general a sheaf.

Definition 2.1.12 Let ¢ : F — G be a morphism of sheaf. The sheaf associated with the image
presheaf called the image sheaf of ¥ is denoted Im (). In the same way we define the cokernel sheaf and
that we denote by Coker(1).

Note that in general (Im(y))(U) # Im(p(U)). The first term is section of the sheaf Im(ip) on the
open set U, while the second is the image of the morphism (U ). More precisely, we have :

Theorem 2.1.2 Let ¢ : F — G be a morphism of sheaves. Then, the following assertions hold :

i) For any open subset U of X, and s € G(U). s € (im(y)(U)) if and only if there exists an open
covering (U;) of U and t; € F(U;) such that, for any j, Sju; = w(U;)(t)).

ii) ¢ is surjective if and only if, for any open subset U of X and s € G(U), there exists an open
covering (U;); of U and t; € F(U;) such that, for any j, Sju; = P(U;)(t).

iit)  is surjective if and only if G = im ().
Proof. i) Im(v) is a the sheaf associated with presheaf U — Im (y(U)), hence the result.

ii) If y is surjective, let U an open subset of X and s € G(U), for all x € U, by theorem 2.1.1, the
map Py is surjective. So there exists ty € Fy such that Py (tx) = sx. Therefore, there there exists
an open neighborhood Uy C U, and t* € Uy such that s, = $(Uy) (t*). The covering (Usx)xeu

answers the question. Conversely, let x € X and s € G(U). Let (U;); be covering of U and
t; € F(Uj) such that Sju; = $(U;)(t;) for all j. Since F is a sheaf then there is t € JF(U) such

that tu, = t; for all j. In particular, for every j such that x € U}, sy = (S\Uj)x = (¢(uj)(tj))x =
Py (tx). Hence  is surjective.

iii) Immediate from 1) and ii).
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Quotients sheaves

Assume that F is a subsheaf of the sheaf G. Then we can define a presheaf whose sections over U are the
quotient G(U)/F (U). The restriction maps of F and G are compatible the inclusions F(U) C G(U)
and hence pass to the quotient G(U)/F (U). This presheaf, i.e., U — G(U)/F(U), is called quotient
presheaf of G by F.

Definition 2.1.13 The quotient sheaf G/ F is the sheafification of the quotient presheaf of G by F.
Proposition 2.1.4 Let F be a subsheaf of G, x € X. Then (G/F)x = Gx/ Fx.

Proof. G/ F is the sheaf associated with the presheaf U — G (U)/F (U) whose stalks at x is clearly
isomorphic to Gy / Fy.

Continuous maps and sheaves

So far, we have only talked about sheaves defined on a single topological space. We are going to study in
this paragraph some transformations of sheaves via continuous mappings between topological spaces.
Let f : X — Y be a continuous map of topological spaces. We will define the pushforward and pullback
functors for presheaves and sheaves.

Pushforward

Definition 2.1.14 Let f : X — Y be a continuous map between topological spaces. Let F be a presheaf
on X. We define the pushforward of F by the formula :

fF (V) =F(fH(V))

forany open V C Y.
Given opens W C V of Y the restriction map is given by the commutativity of the diagram

fF (V) F(fH(V)
lresflmfl(vv)
frF (W) F(f~1(w))

It is clear that this defines a presheaf on Y.
Remark 2.1.7 The construction is clearly functorial in the presheaf F and hence we obtain a functor

f«: PreShx — PreShy
F — folF

Proposition 2.1.5 Let f : X — Y be a continuous map and F be a sheaf on X. Then f.F is a sheaf
onY.

Proof. This immediately follows from the fact that if (W;); is an open covering of some open subset W
of Y then, (f 1 (Wj)); is an open covering of the open f~1(W). Consequently, we obtain a functor

f* : S hX — S hy
This is compatible with composition in the following strong sense :

Lemma 213 Let f : X — Yand g: Y — Z be continuous maps of topological spaces. Then, the
functors (g o f)s and g, o fi are equal.

Proof. Immediate.
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Pullback

We saw in example 2.1.1 that if F is a sheaf on X, then for any open subset U of X F |y is a sheaf on U.
Now if we take an arbitrary subset Z of X. the restriction of F on Z is not necessarily a sheaf because an
open set W of Z is not necessarily an open set of X.

Next definition gives the meaning of F|,, when Z is a closed subset of X. This will be generalized in
definition 2.1.16 to give the meaning of the pullback presheaf defined by a continuous map. For this
purpose, note that if f : X — Y is a continuous map between topological spaces and V is an open of Y,
then the family (U) ¢y consisting of all open subsets U of X satisfying f(U) C V, is an inductive
system for the inverse of the inclusion relation.

Definition 2.1.15 If1 : Z — X is the inclusion of a closed subset Z of X, and V is an open subset of
Z. We define the restriction JF\y as the sheafification of the following presheaf

V— lim F(U)
H
vcu

Definition 2.1.16 Let f : X — Y be a continuous map between topological spaces and G be a presheaf
on Y. We define the pullback presheaf of G by the formula :

frGU) = lim G(V).

faucv

Remark 2.1.8 In the language of categories. The pullback presheaf fpG of G is defined as the left adjoint
of the pushforward f. on presheaves. In other words, f,G will be a presheaf on X such that

MorPreShX(fpg/ -F) = MorPreShy(G/f*F)

Proposition 2.1.6 Let f : X — Y be a continuous map between topological spaces, x be a point of X
and G be a presheaf on ). Then, up to an isomorphism, we have (fpG)x = G(x)-
Proof. .
(fpG)x = ILnfpg(u)
xel
= lim lim G(V)
xel f(U)cv
= lim G(V)
flx)ev
= Gr(x)

Definition 2.1.17 Let f : X — Y be a continuous map between topological spaces and G be a sheaf
on Y. The pullback sheaf f~1G is defined by the formula :

f g = (f pg)Jr
f~1G is also called the inverse image along the map f.
Remark 2.1.9 f~! defines a functor :

f_li Shy — Shy
G — f71G

The pullback f~= is a left adjoint of pushforward on sheaves.
MOI”ShX (filg, .F) = MOTShY(g,f*.;E).
For more details see [9,1.12.1, p.38].
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Example 2.1.4 Let F be a sheaf on X and x € X. Let 1 : {x} — X be the inclusion map, then
-1

Lemma 2.1.4 Let f : X — Y be a continuous map between topological spaces, x € X and G be a sheaf
on'Y, then the stalks (fflg)x and Qf(x) are equals.

Proof. This a combination of proposition 2.1.3 and proposition 2.1.6.

Lemma2.1.5 Let f : X — Yand g : Y — Z be continuous maps of topological spaces. The functors
(gof) tand f~1 o g1 are canonically isomorphic. Similarly, (g0 f)p = fp © gp, for presheaves.

Proof. This follows from the fact that adjoint functors are unique up to unique isomorphism, and Lemma
2.1.3.

Exact sequences of sheaves

In this paragraph, we will define what is an exact sequence of sheaves, and we will study some of their
properties. For this we will restrict our study to the case of sheaves of groups.

Definition 2.1.18 A sequence of presheaves with presheaves morphisms

¢j+1

j—1 j .
P ¥ , Fitl N

> FI

RN ‘/—-7’71

is said to be exact if for all i, Im(y/~') = ker(¢/). In particular the following exact sequence is call a
short exact sequence when it is exact :

0 s F s g > H

)

Remark 2.1.10 Let ¢ : 7 — G be a morphism of sheaves. Then,

i)  is injective if and only if

is an exact sequence.

ii)  is surjective if and only if

is an exact sequence.

Example 2.1.5 Let X = C, and Ox the sheaf of holomorphic functions and consider the map d :
Ox — O, sending f(z) to f (z). There is an exact sequence

e

0 — Cx » Ox » Ox

Indeed, this follows by the following facts :

A function whose derivative vanishes identically is locally constant, so ker(d) is the constant sheaf
Cx.

* In small open disks any holomorphic function is a derivative.
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Lemma 2.1.6 Let ¢ : F — G be a morphism of sheaves on X. Then for any x € X, we have
(ker)x = ker(¢yx) and (im)x = im(¢y).

Proof. Let sy € (ker(ip)) , and let U an open neighborhood of x such that s € (ker())(U) =

ker(y(U)), so p(U)(s) = 0, hence Px(sx) = (p(U)(s)), = 0, s0 sy € ker(x). Conversely, if
¥x(sx) = 0, then (p(U)(s)) = 0 (U is an open neighborhood ofx and s € F(U)), then there exists
an open neighborhood W C u of x such that p(U)(s)w = 0, ie.,, p(W)(sjw) = 0 and therefore

syw € ker (p(W)) whence sy = (sw)x € (ker (1)) . One can proceed similarly for the image.

Theorem 2.1.3 A sequence of sheaves with sheaves morphisms

—y Fi-1 - s Fi i y Fitl L
is an exact sequence if and only if for any x € X
L v 7 v FiH gl
is an exact sequence.
Proof.
S S LN LRy R L

is an exact sequence if and only if, for any j, im(¢p/=1) = ker(y/) if and only if, for any x € X and for
any j, zm(tp] h = ker(lp]) if and only if,

i—1 j +1
¥ 7 ¥k it Y

i—1
. N ]:;]c
is an exact sequence.

Proposition 2.1.7 Let F be a subsheaf of G on X. Then

0 > F > G »G/F — 0

is an exact sequence.

Proof. By proposition 2.1.4, for any x € X,

0 > Fy > Ox >gx/fx:(g/f)x—>0

is an exact sequence. Hence the result.

Remark 2.1.11 If

0 y F XY » H > 0
is an exact sequence over X, then F can be identified with a sub-sheaf of G and G/ F ~ H.
Corollary 2.1.1 Let ¢ : F — G be a morphism of sheaves. Then
1) Im(¢) ~ F /ker().
2) Coker(p) ~ G/Im(y).
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Proof. 1) Itis easy to check that for all x € X, we have

0 —— (ker(y)), > Fy y im(P)y —— 0

It follows by theorem 2.1.3, that

0 —— ker(y) >y F > im(p) —— 0

is an exact sequence. Also by remark 2.1.11 we have im () ~ F /ker(¢)

2) Similar to 1).

2.1.3 Glueing sheaves

In this section, we fix a topological space X, and we consider an open covering (U;);c1 of X with a sheaf
Fi on each subset U;. Our goal is to "glue” the F; together, that is we search for a global sheaf F such
that F, = Fi forall i € 1. For this, we consider the following notion:

Notation. i) Fori,j € I, we denote by Uj; the intersection U; N U;.

it) Fori,j,k € I, we denote by U;jx the intersection U; N U; N Uy.

Definition 2.1.19 A Gluing Data consists of a family of sheaves F; over U; and a family of morphisms
(5,']' : -Fz\ f\ll such that

i) 6 = idr.
ii) 6 = 5.
iii) i = djk o d;; on Ujjg.
A morphism of gluing data (F;, 6;5) — (Gi, ;) is a family of morphism of sheaves ¢; : F; — G

such that the following diagram
i

Fi > Gi
¥j
;i » 9j

is commutative.

Theorem 2.1.4 (Gluing sheaves) There exists a sheaf F on X, unique up to ismorphism such that there
are isomorphisms 0; : Fy;, — JF; satisfying

9] = 51] O 61'.

Proof. Let W be an open subset of X. We write W; = U; "W, and W;; = U;; N W. We are going
to define the sections of F over W by gluing sections of the F!s over Ws along the Wl-’js using the
isomorphisms b;j. We define

= {(si)iet | Gji(sijw,) = Ojw,; (s5w,) } [ T Fo(Wh). (2.1)

icl
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The 6;;’s are morphisms of sheaves and therefore are compatible with all restrictions maps (see definition
2.1.3). Soif V. C W is another open subset we have

0ij(Sijv;) = Sjlv-

Because of this, the defining condition (2.1) is compatible with componentwise restrictions, and they can
therefore be used as the restriction maps in F. We get then a presheaf on X. To finish the proof we have
to complete the following steps:

* First step : We need to establish an isomorphisms 6; : Fy, — Fi. To avoid getting confused
by the indices, we shall work with a fixed index j € 1. Suppose W C U is an open set. We have
W = W;, and projecting from the product [1;c; F;(W;) onto the component

Fi(W) = Fi(Wj)

gives us a map 0; : ]-"|uj — Fj. Moreover, Gj((si)ie 1) = sj. The situation is summarized in the
following commutative diagram

F(W) — TLic; Fi(W;)

Fi(W)

Now, we want to show that 6;'s give the desired isomorphisms. We note that on the restrictions W].]./, the
requirement in the proposition, that
9]./ = 17]/] O 9]

is fulfilled. This follows directly from the (2.1) since we have
S]"Wjj/ = (5]]/ (S]./|Wjj/ )

* 0 is surjective : Let a be a section of F;(W) over some W C Uj, and let s = (5ij(“\wij))iel- Then
s satisfies (2.1) and is therefore an element F(W). As ‘Sjj(“\wjj) = « by the first gluing request,
the element s projects to the section a of F;.

* 0] is injective : Suppose that s; = 0, then Sijw; = Sij(sj) = 0 for each i € I. Now Fj is a sheaf,
and the ((Wjj))ic is an open covering of W;. So s = 0.

* Final step : We have to show F is a sheaf. Let {Wj}]. <1 be an open covering of W C U, and

sj € F(W;) is a bunch of sections matching on the intersections W... Since JFi;~w is a sheaf
patch together to give sections s; in JFyqw) matching on the overlaps U;; NW. This last condition
means that 0ij(s;) = s;. By definition (s;)i € I, then is a section in F (W) restricting to s;. Hence
the result.
The Gluing axiom (see definition 2.1.6) is easier : Let s = (s;)ie; in F (W), and a covering
L= {Vf}je] of W such that sy = 0 for all j € ], then also sy, = 0, and since {vin Wi}je]
forms a covering of W;, we must have s, = 0 as well, since Fy, = F; is a sheaf. But from the
(2.1) we thus see that s = 0.
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2.2 Spectrum of a ring and ringed spaces

2.21 Spectrum of ring

In this section, for a commutative ring R, we will define Zariski topology on the spectrum Spec(R) of R
and study some of the basic properties of this topological space. One can already notice the analogy with
Zariski topology defined on affine algebraic sets, indeed, this last one is fully inspired from the first one
in an attempt to make our work on varieties free from the assumption that the base field k is algebraically
closed (even free from working on varieties defined only on field). We define then and study some basic
facts concerning ringed spaces for which we make intensive call to sheaf theory. All this is made to
prepare necessary tools to define schemes of rings which will generalize the notion of (classical) algebraic
sets.

Definition 2.2.1 Let R be a commutative ring. The set of all prime ideals of R is called the spectrum of
R. It will be denoted by Spec(R).

Remark 2.2.1 Plainly, the set of all maximal ideals of R is a subset of Spec(R), it is denoted by Spm(R).
By Krull theorem, for any (nonzero) commutative ring R, then R has a maximal ideal, so Spec(R) is
nonempty.

Examples 2.2.1 1) If R be a field, then Spec(R) = {0}.
2) Spec(Z) = {pZ | p prime number } U {0}.

3) Bycorollary 1.1.1, if R is an algebraically closed field, then for any positive integer n, Spec(R[Ty, ..., Ty]) =
{(Ty —ay,..., T, —ay)| where a; € R}

Notation. Let R be a ring and S be a subset of R.

* We define
V(S) = {P € Spec(R) | S C P}.

« Forany f € R, we denote by D(f) the complement of V({f}) i.e,
D(f) ={P € Spec(R) | f ¢ P}.
Remark 2.2.2 One can easily see that V(1) = @ and V(0) = Spec(R).

Proposition 2.2.1 Let R be a ring, S, M be subsets of R, I,] be ideals of R and f € R. Then, the
following statements hold :

1) IfS C M, then V(M) C V(S).

2) Let (S) be the ideal generated by S, then we have V(S) = V((S)).
3) V(J) = V(rad())).

4) V(I) =Qifand only if | = R
5) V(1) = V(J) ifand only if rad(I) = rad(J).

6) V(DL V(])=V(INn])=V(])
7) If {1;} is a family of ideals of R, then
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Proof. 1) Clear.

2) Plainly, we have V((S)) C V(S). Conversely, let P € V(S) and g € (S), we need to show that
§ € P. We can write g = 35 fihj, fj € S, hj € R. Since S C P, then forall j € {1,...,r},
fj € P. So fihj € P. Thus, Z]r.zl fihj € P which means that g € P.

3) Since ] C rad(]), then clearly V(rad(]J)) C V(]). Conversely, P € V(]), then we have ] C P,
sorad(]) C rad(P) = P. Thus P € V(rad(])).

4) As seen above, we have V(R) = @. Suppose that I # R, then there exists a maximal ideal M of
R such that I C M. By 1) we have V(M) C V(I). Since M is prime, then M € V(M). So
V(I) # @.

5) If rad(I) = rad(]), then by 3), V(I) = V(]). Conversely, suppose that V(I) = V(]), then
Nicp P = Njcp P, which means that rad(I) = rad(]).

6) Wehave IN] C I,],soby 1) V(I)UV(]) C V(IN]). Conversely, let P € V(IN]), ie.,
INJ C P. Since P is prime, then necessarily I C Por ] C P,so P € V(I)UV(]). The rest is
clear.

7) Note that P € (; V(I;) if and only if P contains all I; if and only if P contains \U; I; if and only if

Remark 2.2.3 Proposition 2.2.1 shows that we can consider a topology on Spec(R) by taking the subsets
V(S) to be the closed subsets of Spec(R).

Definition 2.2.2 Let R be a commutative ring. The topology on Spec(R) whose closed sets are the sets
V(S), where S describes all subsets of R, is called the Zariski topology of Spec(R). For f € R, D(f) is
plainly an open subset of Spec(R). These open sets are called the principal open subsets of Spec(R).

Remarks 2.2.1 i) Let P € Spec(R), then P is a closed point of Spec(R) (i.e., { P} is a closed subset
of Spec(R)) is closed if and only P is a maximal ideal of R.

ii) (0)(= {0}) € Spec(R) if and only if R has a nonzero divisors.
Proposition 2.2.2 For a commutative ring R, the following statements hold :
1) D(f) = @, ifand only if f € N(R), the nilradical of R.
2) D(f) = Spec(R), ifand only if f € U(R), the group of invertible elements of R.
3) Forall f,g € R, D(fg) = D(f) N D(g).
4) For every m € N, D(f™) = D(f).

Proof. 1) Clearly, if D(f) = @, then f € P for all prime ideals P of R, thus f € N(R). The
converse is straightforward.

2) If D(f) = Spec(R), then f is not in any prime ideal of R, and so it is not in any maximal ideal.
Since every non-unit is contained in some maximal ideal, f must be a unit. The converse is clear.
3) and 4) Clear.
Theorem 2.2.1 The sets D(f) form a basis for the Zariski topology.

Proof. Indeed, to show for any Ideal | of R we have Spec(R) \ V(]) = Use; D(f)-
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Notation. For any Y C Spec(R), let j(Y) := {f € R|Y C V(f)}. One has j(Y) = Npey P. In
particular, j(Y) is a radical ideal of R.

Lemma2.2.1 1) IfY; and Y, are subsets of Spec(R) such that Y1 C Yy, then j(Y2) C j(Y7).
2) If (Yi)ter is a family of subsets of Spec(R), then j(Uiet Yi) = Nier j(Yi)-
3) For every subset Y of Spec(R), we have Y C V(j(Y)).
4) For every subset S of R, we have S C j(V(S)).

Proof. 1) and 2) clear.
3) Let P Y. Since j(Y) = Npey P C P, then P € V(j(Y)).
4) Clear.

The following result gives a characterization of the closure of a subset of Spec(R).

Proposition 2.2.3 Let Y be a subset of Spec(R). Then' Y = V(j(Y)).

Proof. By lemma 2.2.13)Y C V(j(Y)),s0 Y C V(j(Y)). Conversely, it suffices to show that any
closed set containing Y must contain V(j(Y)). If Y C V(S), then for any P € Y, we have S C P, and
this yields S Npey P = j(Y). So V(j(Y)) C V(S).

Remark 2.2.4 Let X be a topological space, if X is Hausdorff, then for every x € X, we have {x} is
closed. So, X = Spec(Z) is not Hausdoroff. Indeed, we have j({0}) = Npex P and by proposition

2.2.3, we have {0} = V(j({0})) = V(0) = Spec(Z). So {0} is not closed.

In the chapter 1, we gave a one-to-one correspondence between the set of algebraic sets of A" and the set
of radical ideals of k[T, . . ., T,,|, when k is algebraically closed. This was defined by the maps X — I(X)
and | — Z(]). The following result gives a similar correspondence when replacing A" by Spec(R) and
k[Ty,..., Tx) by R.

Theorem 2.2.2 Let R be a commutative ring. Then
i) For every ideal I of R, we have j(V(I)) = rad(I).

ii) The maps S — V(S) and Y — j(Y) induce bijections, inverse one of the other, between the set
of radical ideals of R and the set of closed subsets of Spec(R).

Proof. i) Wehave j(V(I)) = Npev) P = Nicp P = rad(I).
ii) This follows directly from i) and proposition 2.2.3.

Proposition 2.2.4 1) Let ¢ : R — A be a homomorphism of rings. Then { induces a continuous
map p* : Spec(A) — Spec(R) given by p*(Q) = ¢p~1(Q).

2) Let | be an ideal of R and t : R — R/] be the canonical homomorphism. Then 1T* is a
homeomorphism from Spec(R/]), to the subspace V(]) of Spec(R).

Proof. 1) Itis clear that for any Q € Spec(A), p~1(Q) € Spec(R). One can easily see that

This shows that P* is continuous.
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2) We know that the prime ideals of R/ ] are the ideals 1/ ] where I is a prime ideal of R containing |.
The rest of the proof is straightforward.

Corollary 2.2.1 Let R be a commutative ring, then Spec(R) is homeomorphic to Spec(R/N(R)) where
N(R) denotes the nilradical of R.

Proof. It suffices to see that V(N(R)) = Spec(R).

Remark 2.2.5 Let S be a multiplicatively stable subset of R\{0}. By [3, Proposition, 3.11, p.41], there
is one-to-one correspondence between prime ideals of ST'R, and prime ideals of R disjoint from S. One
deduce then the following result.

Proposition 2.2.5 Let Q := {P € Spec(R)|PNS = @}, then the map 6 : QO — Spec(S™'R),
defined by 0(P) = S~'P is a homeomorphism.

Proposition 2.2.6 Let R be a commutative ring. Then Spec(R) is compact.

Proof. It suffices to show that any cover of Spec(R) by basic open sets, has a finite sub-cover. Assume
Spec(R) C Uier D(ft) and let | := ({fi,t € T}), be the ideal of R generated by the f;. For any
P € Spec(R), we have P € D(f) for some t € T. Thus, | cannot be contained in any prime ideal of R,
and so cannot be contained in any maximal ideal of R. Write 1 = Y ;_y hjf;. For any P € Spec(R), we

have1 & P, so fi, & P, for some j € {1,...,r}. Hence f € D(fy,). Therefore, Spec(R) € Uj_y D(ft,)-

Corollary 2.2.2 Let R be a commutative ring and let f € R. Then D(f) is compact with respect to the
subspace topology induced from Spec(R).

Theorem 2.2.3 Let R be a Noetherian ring, then Spec(R) is a Noetherian topological space.

Proof. Let
V(i) 2V(J2) 2 -

be a descending chain of closed sets in Spec(R), where |; are ideals of R, then we have a corresponding
ascending sequence
rad(J1) C rad(J2) € - - -

of ideals of R. Since R is a Noetherian ring, then there exists d € IN such that, for all v > d, rad(],) =
rad(J;). It follows that V(J,) = V(Jz), for all ¥ > d showing Spec(R) is Noetherian.

Irreducibility

We give in this section a characterization of the irreducible closed subsets of Spec(R).

Lemma 2.2.2 Let R be a commutative ring and P be a prime ideal of R. Then V (P) is irreducible in
Spec(R).

Proof. Suppose that V(P) = V(J1) U V(J2), where ]y, ], are ideals of R. Since P € V(P), then
P e V(J1)orP € V(]y). Assume that P € V(J1), i.e., ] C P. , then for any Q € V(P), we have
J1 CPCQ,s0Q € V(]1). Consequently, V(P) = V(]1).

Proposition 2.2.7 Let | be an ideal of R. If V(]) is irreducible, then rad(]) is a prime ideal of R.
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Proof. Let f,g € Rwith fg € rad(]) and suppose that f,g ¢ rad(]). Then there exist two prime ideals
P,Qsuchthat ] C P,Quwith f ¢ Pand g ¢ Q. We then have P € V(])ND(f)and Q € V(J) N D(g)
and clearly V(J) N D(f), V(J) N D(g) are nonempty open subset of V(). Since V (]) is irreducible, by
proposition 1.1.3 we have W := (V(J) N D(f)) N (V(J) N D(g)) # @. Let L be the intersection of all
elements of W. We have:

LCV(])=V(rad(])),sorad(]) C Land L C D(f)ND(g) = D(fg),so fg ¢ L which contradicts
the fact that fg € rad(J) C L. Hence rad(]) is a prime ideal.

Remark 2.2.6 Ifrad(]) is a prime ideal, by lemma 2.2.2 then V (]) is irreducible.

Proposition 2.2.8 Let ) be a closed subset Y of Spec(R), then' Y is irreducible if and only if Y is of the
formY = V(P) for some ideal P € Spec(R).

Proof. This follows from the above since for any ideal | of R, we have V(]) = V (rad(])).

Theorem 2.2.4 Let R be a commutative ring. Then Spec(R) is irreducible if and only if N(R) is a
prime ideal of R.

Proof. For any P € Spec(R), we have N(R) C P,so P € V(N(R)). Thus, Spec(R) = V(N(R)),
hence by remark 2.2.6 Spec(R) is irreducible when N(R) is a prime ideal of R. Conversely, suppose
that Spec(R) is irreducible. Let fg € N(R). By proposition 2.2.2 3) we have D(fg) = D(f) N D(g),
moreover, if f and g are not nilpotent, then by proposition 2.2.2, D(f) and D(g) are nonempty. Since
Spec(R) is irreducible then D(fg)(= D(f) N D(g)) is nonempty. This implies that fg is not nilpotent
a contradiction.

Generic points
Definition 2.2.3 Let X be a topological space, Y be a closed subset of X and x € Y. We say that x is a
generic point for Y if Y is the closure of the singleton {x},ie., Y = {x}.

Examples 2.2.2 1) Let P be a prime ideal of R, then P = V(P) and P is the only generic point of
V(P).

2) For an integral domain R, the zero ideal N(R) (= (0)) is prime, and {(0)} = Spec(R). Then
(0) is a generic point of Spec(R).

2.2.2 Ringed spaces

Definition 2.2.4 A ringed topological space is a pair (X, Ox) consisting of a space and a sheaf of rings
Ox called the structure sheaf.

Examples 2.2.3 1) Let X be a topological space and Ox(= C°(.,R)) be a sheaf of continuous real
functions on X. Then (X, Ox) is a ringed space.

2) Let M be a C*®-manifold, then the sheaf C*(.,R) of smooth functions is a sheaf of rings on M.

Remark 2.2.7 Let (X, Ox) be a ringed space and U an open subset of X, then (U, Oxy) is a ringed
space, the structure sheaf Oy will be denoted simply by Oy.

Definition 2.2.5 A morphism of ringed spaces is pair (f, f*) : (X, Ox) — (Y, Oy), where f : X —
Y is continuous map, and f* : Oy — f.Ox is a morphism of sheaves of rings on Y.

Remark 2.2.8 For every open subset U of Y :
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1) fAU): Oy(U) — Ox(f~1(U)) is a ring homomorphism.

2) We have
£ _
Oy(U) » Ox(f~1(U))
resyy TS =1 (uy,r—1(v)
-1
ONY) —— o Ox(F (V)

for any open subsets V.C U of Y

3) Let’s denote the set of morphisms of ringed spaces from X to Y by Hom((X, Ox), (Y, Oy)).
Then we have a canonical categorical isomorphism : Hom((X, Ox), (Y,Oy)) =
Y (a continuous map) and f° : f~1Oy — Ox (a morphism of sheaves) }

(see [9, Lemma 1.45])

Notation. Let (f, f*) : (X, Ox) — (Y, Oy) be a morphism of ringed spaces. We will simply write f
instead of (f, f*).

Examples 2.2.4 1) Let ¢ : U — V be a morphism of varieties, then  induces a canonical mor-
phism of ringed spaces
(u/ OU) - (V/ OV)
where Oy (respectively Oy ) is the sheaf of reqular functions on U (resp V).
We take f = ¢ : U — V to be the corresponding continuous map and f* : Oy — f.Oy to be
defined by : For each open set W C V

Ov(W) — Ou(f~1(W))
h —  fi(h) :==hoy.
2) Let (X, Ox) be a ringed space, W C X be an open subset and let j : W — X be the canonical
injection. Then (j, j*) : (W, Ow) — (X, Ox) is a morphism of ringed spaces, where for every
open U of X, j*(U) : Ox(U) — j.Ow(U)(= Ow (U NW)) is the restriction morphism.
Remarks 2.2.2 1) Let f : (X, Ox) — (Y, Oy) be a morphism of ringed spaces. For any x € X, f
induces a morphism of the stalks fﬁ 1Oy p(x) — Oxx

2) Let (f,f*) : (X,0x) — (Y, Oy), and (h,h*) : (Y, Oy) — (Z,Oz) be morphisms of ringed
spaces. It is clear that h o f is a continuous map and by lemma 2.1.3, we have (h o f), = hy o f,,
then (ho f),Ox = h«(f.Ox), since f,Ox is a sheaf on Y then h, o f,Ox is a sheaf on Z.

Definition 2.2.6 Let (f, f*) : (X,0x) — (Y,Oy) and (h,h*) : (Y,0y) — (Z,0z) be mor-
phisms of ringed spaces. The composition of these morphisms is given by the map h o f and the morphism
of sheaves ht given by

OZ — h*Oy E— h*f*OX
We denote this composition of morphisms(of ringed spaces) as follows :
(1) o (f,f5) = (o f, f* o bF).
We get in this way a category RS of ringed spaces. An isomorphism of ringed spaces is a morphism which
has an inverse. If X is a ringed space with structure sheaf Ox, Z a topological space and f : Z — X a

continuous map, then f~1Ox can be considered as a structure sheaf on Z. In particular any subspace of
a ringed space is a ringed space.
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Locally ringed spaces

Definition 2.2.7 i) A locally ringed space is a ringed space (X, Ox ) with the property that the stalk

of each point is a local ring. In other words for all x € X, Ox x = lim Ox(U) is a local ring.
xel

it) Given a locally ringed space (X, Ox), we say that Ox  is the local ring of X at x. We denote by
my x or simply by my the maximal ideal of O . The residue field of X at x is Ox x/my. We
denote it by k(x).

Example 2.2.1 Let X be a complex analytic manifold and Ox the sheaf of holomorphic functions on X,
then (X, Ox) is a locally ringed spaces.

Definition 2.2.8 A morphism of locally ringed spaces (X, Ox) — (Y, Oy) is a morphism of ringed
topological spaces (f, f*) such that for all x € X the induced map

fE: Oy s — Oxx

is a local homomorphism i.e., f* (Mf(x)) € my. Recall that we have Oy ¢(,) = (f1Oy)y (see lemma
2.1.4).

Example 2.2.2 Let M be a manifold on which we consider the sheaf C*°(M). Then (M,C®(M)) is a
locally ringed space. Moreover, any morphism f : M — N of manifolds induces a morphism of locally
ringed spaces (M,C*®(M)) — (N,C*®(N)).

Let (X, Ox) be a locally ringed space and x € X. We have a canonical surjection Ox AN k(x),

called evaluation at x. For h € Ox , denoting ¢(x) by h(x), h(x) # 0 if and only if h is invertible in
Ox x. Let U be an open subset of X and x € U. The composition morphism Ox(U) — Ox x — k(x)
will also be denoted by h — h(x). In particular, if h is an invertible element of Ox(U), then h(x) it is
a nonzero element of k(x).

2.3 Affine schemes and varieties

As we have seen, one can view a differentiable manifold of dimension m as a locally ringed space.
Grothendieck® defined a scheme in roughly the same way, with the important difference that, rather
than one local model R™ in each dimension, one needs to use all the ringed spaces Spec(R) for the local
models.

2.3.1 Affine schemes

In section 2.1, we introduced the notion of sheaf on an arbitrary topological space. In this section, we are
interested in a very particular space, the spectrum of a commutative ring. We continue to assume that R
denotes a ring commutative a unit.

*Alexander Grothendieck, (French 28 March 1928-13 November 2014) was a stateless and then French mathematician
who became the leading figure in the creation of modern algebraic geometry. His research extended the scope of the field and
added elements of commutative algebra, homological algebra, sheaf theory, and category theory to its foundations, while his
so-called "relative” perspective led to revolutionary advances in many areas of pure mathematics. He is considered by many
to be the greatest mathematician of the twentieth century.
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The Structure Sheaf on Spec(R)

Definition 2.3.1 Let R be a ring, X = Spec(R). We define a sheaf of rings on Spec(R) as follows. For
any open subset U of X, let

Ox(U) := {s: U — Tgex Rg| forall Q € U, we have s(Q) € Rq, there exista, f €
R, and an open subset V of U such that V.C D(f) and s(L) = fforal L e V.

This formula clearly defines a sheaf of rings on X.

Remark 2.3.1 1) Note the similarity in the above definition the definition of reqular functions on a
variety. The difference is that we consider functions into various local rings, instead of to a field.

2) It is clear that sums and products of such functions are again such, and that the element 1 which
gives 1 in each Rp is an identity. Hence Ox(U) is a commutative ring with identity.

3) If V.C U are open subsets of X, then the restriction map Ox(U) — Ox(V), s — sy isa
homomorphism of rings.

Proposition 2.3.1 Let X = Spec(R). Then :

1) Forall f € R, we have a canonical isomorphism Ox (D(f)) =~ Ry, where Ry the localization of R
byS={1f,f%...}.
2) Ifg € Rand g € (f), then there is commutative diagram

Ox(D(f)) » Ox(D(3))

+

where the vertical isomorphisms come from 1).

3) For any P € Spec(R), there is a natural isomorphism Ox p = Rp which fits in a commutative
diagram

~

OX,p — > Rp

|

Ox(X) =

Here the vertical morphisms are the natural ones and the lower horizontal one comes from 1).

Proof. 1) Let f € R,andlet ¢ : Ry — Ox(D(f)) be the map defined by :

1/)(}% := themap s : D(f) — | [ Rp which sends any P € D(f) to the image off—n in Rp
PeX

One can easily see that  is a homomorphism of rings. We wish to show that  is an isomorphism.
* 1 is injective :
We have ker(¢) = {fin € Ry| 1/)(%,,) =0} = {f% € Ry|s(P) := f" = 0, in Rp, forall P}
Suppose thatf“ € ker(y) and £ 4 #0,and let Ann(f‘Z ) ={g€Rs|g" f" = 0}. Since fn,smce
77 # 0, then Ann( w) # Ry, so there exists a maximal ideal m of Ry such that Ann(fn) Cm. It
follows that the i zmage of £ Ia in Ry, does not vanish, a contradiction.
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* 1P is surjective :
Let s € Ox(D(f)). We know that in the neighbourhood of every point of D(f), s is represented by
a fraction. Since B := {D(g),8 € R} is a basis of X (see theorem 2.2.1) and D( f) is compact (see
proposition 2.2.2), then there are f1,...,fy € RD(f) = U]r-:1 D(f]) Thereare g1,...,8 € R

such that s is represented on D(f;) by ‘% By proposition 2.2.2 we have D(f;) N D(f;) = D(fif;)-

Using the fact that 1 is injective, we get % = 31, Hence for some m
! ]

(fifi)" figi = (fify)" figj-
Using the assumption and proposition 2.2.1, there are hy, ..., h, € Rand d > 1 such that fd =
1 h]-f]?”ﬂ. Let p:= Y[y hjf!'g;, it easy to check that Bfi"tt = flfmg,. Then

B _ &

i fi
in Ry,. In other words, fﬁd is an element of D( f) whose image in Ox(D(f)) is s.

2) Immediate, using the fact that if D(g) C D(f) ifand only if g € rad((f)) if and only if g™ = fc, for
some positive integer m. So f is invertible in Rg, and we have a homomorphism of rings

GZRf—> Rg
a

n
frob g

3) We have a natural isomorphism Oxp = lim Ox(D(f)). By 1) and 2), last ring is naturally
fER,f&P
isomorphic to lim Ry, which can be identified with Rp ().
fER,fEP
Remark 2.3.2 Let R be a ring and P € Spec(R). There is a natural isomorphism

@ Rp ~ Rp
fER,f¢P

Here the arrows in the inductive system are defined as follows. If g is a multiple of f then the arrow is
the natural map. Otherwise there is no arrow. This justifying (x)

Theorem 2.3.1 Let R and T be two rings, and let 1 : R — T be a homomorphism of rings. Then :
i) (X = Spec(R), Ox) is a locally ringed space.
i)  induces a natural morphism of locally ringed spaces

(¥, 9*): (Z:=Spec(T),0z) —> (X := Spec(R),Ox)

iii) Any morphism of locally ringed spaces from Z to X is induced by a homomorphism of rings ¢ :
R — Tasinii).

Proof. i) This follows from proposition 2.3.1.

ii) By proposition 2.2.4 1 induces a continuous map p* : Z — X, we can localize 1 to obtain a local
homomorphism of local rings g : Ry (Q) — Tq. Now, for any open subset U of X, we have a
homomorphism of rings (p*)* : Ox(U) — Oz ((y*)~1(U)). One can see that (y*, (¢*)F) is
a morphism of locally ringed spaces.
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iii) Let (f, f*) : (Z,0z7) — (X, Ox) be a morphism of locally ringed spaces. By definition we have
for any open subset V of X, we have a homomorphism of rings f*(V) : Ox(V) — Oz(p~1(V)).
In particular, for V.= X, we have Ox(X) = R, and Oz (f (X)) = Oz(Z) = T. So we get
a homomorphism of rings 1 := f*(X) : R — T. Let Q € Spec(T), we have an induced local
homomorphism on the stalks, f* Ox r(o) — Ogz,q such that the following diagram
e

||

Rfq) — T

4

commutes. The assumption that fé is local then gives v~1(Q) = f(Q), which shows that f

coincides with the map Z — X induced by . It is immediate that f* also is induced by . So
that (f, f*) does indeed come from 1.

Corollary 2.3.1 Let R, T be a two rings. Then the map
x: Homyes (R, T) — Hom((Z,0z),
Y — (", (97)%)
is a bijection.
Proof. This follows from theorem 2.3.1 ii) and iii).

Now, we come to the definition of a scheme.

Definition 2.3.2 Let X be a locally ringed space. We say that X is an affine scheme if there exists
a ring R such that X is isomorphic to the spectrum of R, i.e., X is an affine scheme if and only if
(X, 0x) =~ (Spec(R), Ogpec(r)), where > is an isomorphism of locally ringed spaces as defined in
section 2.2.2.

Examples 2.3.1 1) For a field k, Spec(k) consists of one single point, with structural sheaf k.

2) Spec(k[Ty, ..., Ty]) is the affine space A™ over k. More generally, an affine variety over a field k
is an affine scheme Spec(R), where the ring R is a finitely generated k-algebra.

3) Let X be an affine scheme and let f € R, then (D(f), Oxpys)) is also an affine scheme. Indeed,
the canonical ring homomorphism
R — Rf

induces a continuous map
h: Spec(Rf) — Spec(R)

which is a homeomorphism onto its, image D(f) (see proposition 2.2.5). Moreover, h* is an iso-
morphism. Indeed, for any Q € Spec(Ry)

Iyt Ryg) — (Re)g

since f € QN R. Thus
(D(f)/ OX|D(f)) = (Spec(Rf)/ OSpec)

4) Let (X, Ox) be an affine scheme, V C X be an open subset and set Oy := Ox,y, then (V, Oy ) is
not necessarily an affine scheme (see [9, 4.1]).
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Now, we come to the general definition of a scheme :

Definition 2.3.3 A scheme is a locally ringed space (X, Ox) such that every point x in X has an open
neighbourhood U, which is isomorphic to an affine scheme as a locally ringed space. For each point x of
a scheme X, one defines its residue field k(x) as the quotient of the local ring Ox x, by its maximal ideal
mx.

Remarks 2.3.1 1) Equivalently, X is a scheme if there exists an open covering {U;}ic; of X such
that (U;, Ox\u,) is isomorphic to an affine scheme (Spec(R;), Ogpec,(r,)) for some rings R;.

2) We say that an open subset U of a scheme (X, Ox) is affine if (U, Oxyy) is an affine scheme.
Proposition 2.3.2 Any scheme has a basis of affine open subsets.

Proof. Let X be a scheme. By remarks 2.3.1, there exists an open covering {U;};c; of X such that
(Ui, Oxy,) is an affine scheme, i.e., For any i € I there is a ring R;, a homeomorphism

P : U; — Spec(R;)

and a sheaf ismorphism
Pi: OSpec,-(R,-) — lpz*(OX\UZ)

For each i, we know that {D(f;) C Spec(R;)|fi € R;} is a basis for the topology of Spec(R;) (see
theorem 2.2.1). Moreover, these D( f;) again define affine schemes by examples 2.3.1 3)

(D(fi), Ospeci(r;) | D(f;)) = (Spec(R), Ogpec,(ry))-

Let V; := ¢~ (D(f;)) C Uj, so that

(Vi, Oxpv;) = (D(fi), Ospec (1))

is an affine schemes and B; := {V; C U;|f; € R;} is a basis of the topology on U; C X. Then
B = Uje Bi is a basis of the topology of X consisting of affine open subsets.

We now describe the morphisms between schemes.

Morphisms of Schemes

Definition 2.3.4 A morphism of schemes is just a morphism of the underlying locally ringed spaces.

Remarks 2.3.2 1) Observe that if f : Z — X is a morphism of schemes, then for each z € Z, with
image x = f(z), there is an induced homomorphism Ox y — Oz 5, hence also a homomorphism
between the residue fields k(x) — k(y).

2) For x € X, by proposition 2.3.1 we have a natural isomorphism Ox » = Rp, for some prime ideal
P of R. Moreover, we have my = PRp, and k(x) = Rp/PRp.

3) The schemes form a category (which is a full subcategory of the category of locally ringed spaces),
we shall denote it by Sch.

4) We shall denoted by ASch the category of affine schemes.
Theorem 2.3.2 There is an equivalence of categories

Spec: (Ring)? — ASch
R — (Spec(R),OspeC(R))
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Proof. One can easily see that Spec is a morphism of categories. It suffices then to show that it is fully
faithful.
Let R, T be rings. We define the maps :

X Homyiygs (R, T) — HOI’H((Z, O0z), (X, OX))
Y — (", 9%)
which is a bijection (see corollary 2.3.1). Let X = Spec(R), Z = Spec(T), we define :

Y: Hompss(Z,X) — Hompgings(R,T)
(f. f5) — FHX)
where as previously seen, f* : Ox(X)(= R) — Oz(Z)(= T). It is easy to see that x o ¥ = id, and

using theorem 2.3.1 iii), we also have ¥ o x = id.

Relative schemes

Grothendieck has also introduced the relative viewpoint, whose idea is to study morphisms of schemes
and how they behave instead of studying a scheme by itself.

Definition 2.3.5 i) Let S be a (fixed) scheme. An S-scheme (or a scheme over S) is a scheme X,
equipped with a morphism f : X — S.

ii) A morphism from (X, f: X — S) to (Y,g: Y — S) is a morphism of schemes h : X — Y

such that the following diagram
X d > Y
S

is commutative. We also call such a morphism h an S-morphism.

Remarks 2.3.3 1) The schemes over S form a category Sch/S, and the set of morphisms as defined
above will be denoted by Homg(X,Y).

2) We will say X is a scheme over over (a ring) R if X is a scheme over Spec(R).

Examples 2.3.2 1) Let S be a scheme that we view as an S-scheme with id : S — S, and let X with
f+ X — San S-scheme. The S-morphism f is called an S-section.

2) Every affine scheme is a scheme over Z. Indeed, for any ring R, we have the natural map

which induces such structure.

3) An affine variety X over an algebraically closed field k comes with an inclusion k — k[X].
Applying Spec to this map, we see that the canonically associated scheme to X is a scheme over k.

Now, we come to special classes of morphisms.
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Open subschemes and closed subschemes

Definition 2.3.6 i) An open subscheme U of a scheme X is an open subset, equipped with the re-
striction of the sheaf Ox to U.

ii) An open immersion is a morphism of schemes X — Y which induces an isomorphism from X to
an open subscheme of Y.

The notion of closed subscheme is more complicated, because you have to define a locally ringed space
structure on the closed subset, and there is no canonical one. First we have to define closed immersions.

Definition 2.3.7 A closed immersion is a morphism f : X — Y of schemes such that :
i) f induces a homeomorphism (a bicontinuous map ) from X to a closed subset of Y.
ii) The morphism of sheaves f* : Oy — f.Ofx is surjective.

Example 2.3.1 Let R be a ring, | an ideal of R, X = Spec(R) and Z = Spec(R/]). By proposition
224 %+ Z — X is a homeomorphism from Z to V(]), and (70*)* : Ox — 15Oy is surjective
because it is surjective on the stalks.

Definition 2.3.8 (closed subscheme) Let X be a scheme. A closed subscheme of X is an equivalence class
of closed immersions into X.

Remark 2.3.3 More precisely, A closed subscheme of a scheme X is a scheme Z, equipped with a closed
immersion 1 : Z — X, where one identifies the pairs (Z,1) and (Z',1') if there exists an isomorphism
of schemes h : Z — Z' such that the following diagram

X
l]\
Z

Example 2.3.2 Spec(R/]) is a closed subscheme of Spec(R) with underlying topological space V (J).

%Z/
/
1

is commutative.

Gluing schemes

Given a family {Xi}i ¢ Of schemes indexed by a set 1. Assume that in each of the schemes X; we are
given a collection of open subschemes X;;, where the indices i and j run through I.

Notation. Let X;j C X; be open subschemes, and 6;; : X;; — Xj; be isomorphisms of schemes for all
i,j € 1. We require also that

i) 6, = id.
i) 51](X1] N Xik) = in N X]'k.

iii) éik = 5ik o 51] on Xz] N Xik'
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Proposition 2.3.3 Given gluing data X;, b;; as above, there exists a scheme X with open immersions
6; : X; — X such that

(2.2)

X] <

The scheme X has the universal property : For every scheme Z and any family of morphisms of schemes
i« X; — Z satisfying
Xij — Xi

(2.3)

is commutative.
Remarks 2.3.4 1) In (2.2), we have ‘SIXU = (5‘in o Jjj.

2) In (2.3), we have 1x,. = 1j|x;; © Jij-

Proof. Let X :=[[; X;/ ~, where x € X; ~y € X ifand only if y = 6;;(x). This makes a topological
space X with open subsets X; C X. We have a sheaf Ox; on each X;, and we glue them to get Ox (see
theorem 2.1.4). For more details for the proof we refer to [9, Section 4.3, p.91].

Example 2.3.3 Let X1 = X, = A}, X1p = Xo1 = AL\ {0}. Write X35 = Spec(k[X, X 1]),
Xo1 = Spec(k[Y,Y™1]). Gluing them by X — Y1, we get the projective line P*.

2.3.2 Varieties
The goal of this section is to
* describe how schemes are a generalization of varieties
* or more precisely that how there is a fully faithful functor.
T : Var(k) — Schy

from the category of varieties over an algebraically closed field k to the category of schemes over

Spec(k).
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If you feel like a physicist, you might want to regard this as a way of understanding observables like
positions in terms of spectra of certain operators. The starting point is the basic observation that the
information contained in ordinary spaces may be encoded in the (rings and / or algebras of) functions on
these spaces.

Notation. Let X be a topological space and denote by t(X) the set of nonempty irreducible closed subsets
of X. Hence if Z C X is closed, then t(Z) C t(X). Moreover t has the following properties :

i) H(Z1UZy) = t(Z1) UH(Zy) if Z1,Zy C X are closed
ii) For a family of closed subsets {Z;};, we have t((; Z;) = N; t(Z;).

i) and ii) define a topology on the set t(X) by saying that Y C X is closed if and only if Y = t(Z) for
some closed subset Z C X.
In addition, a continuous map f : X1 — Xp induces a continuous map t(f) : t(X1) — t(Xyp) given

by

t(f):Z — f(Z).

t(f) is well-defined since for an irreducible closed subset Z of X, f(Z) is irreducible, so its closure f(Z)
is also irreducible.
Thus t defines a functor Top — T op. Furthermore we have a continuous map

7 X — HX)
x — {x}

This map <y is the tool we have to use to add generic points in order to construct a scheme from a variety.
We will only sketch the proof of the following theorem. A more detailed proof can e.g. be found in [12].

Theorem 2.3.3 Let k be an algebraically closed field. Then there exists a fully faithful functor T :
Var(k) — Schy. from the category of varieties over k to the category of schemes over Spec(k).

The idea of the proof : Let X be a variety over k and denote by Oy its sheaf of reqular functions. We
set

T(X) = (H(X), 7:0x).

One has to show that this is indeed a scheme over Spec(k). One first proves that (t(X), B+Ox) is a
scheme if X is an affine variety. Then, by examples 2.3.2, we know that giving a morphism of schemes
t(X) — Spec(k) is equivalent to endowing the sheaf v, Ox with the structure of a vector space over k.
This is done by using theorem 2.3.2 : Since v~ (t(X)) = X, we have

Homgy, ((£(X), v«Ox), (Spec(k), Ok)) ~ Hottyjpgs (k, v« (t(X))) = Hotmyipgs (k, Ox(X)).

We define this ring homomorphism k — Ox(X) by mapping a € k to the constant function A, on X.
It follows that T(X) is a scheme over Spec(k). Now if X and Y are two varieties, one also checks that the
natural map induced by T

Hottygy 1) (X, Y) — Homgy, (t(Y), T(X)).

is a bijection.

The functor T being fully faithful, it follows again that we may identify the category of varieties over
k with a full subcategory of the category of schemes over Spec(k) in the case of an algebraically closed
field. Thus we may see varieties as being "embedded” into the category of schemes. In particular, that
T(X) =~ 1(Y) as schemes if and only if X ~ Y as varieties.
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New definition of a variety

Definition 2.3.9 Let k be an algebraically closed field. We say that a scheme X over Spec(k) is an affine
variety over k if it is isomorphic to the spectrum of the coordinate ring of an affine variety. In other
words, X = Spec(R), where R is a finitely generated k-algebra with no zero divisors.

Examples 2.3.3 The schemes
1) AL = Spec(Clt]) and Spec(C[X, Y]/ (X* — Y?)) are affine varieties.

2) Spec(C[X,Y]/(XY)) is not affine variety.

2.4 Fiber products and dimension of schemes

2.4.1 Fiber products

In classical geometry (The theory of algebraic varieties). We know that we can construct the Cartesian
product X x Y of two varieties X and Y. The identification A}l x A" = AI™™ shows that this is a
reasonable thing to do. Indeed, If X = Z(f1,...,fr) C A} andY = Z(g1,...,8s) € A} are two
affine varieties, then their product X x Y is the affine variety Z(f1,..., fr,1,---,8s) C AZ“’”, and
departing from this, the general case is handled by a gluing process. However, with schemes we redefine

A} = Spec(k[T1,..., Tu])

and the cartesian product no longer works even as sets!

We have to understand what the product really means in the categorical language. Let us start with sets
X, Y, the product is a new set X x Y with projections t1 : X — X X Y and rp : X — X x Y which
is universal in the sense that given any other set Z with projections f1 : Z — X, fo 1 Z — Y , we
have a unique map ¢ : Z — X x Y , namely $(z) = (f1(2), f2(z)), such that

- fa y

f1l \\4’\\ T”Z
~ %

X<7T—1X><Y

commutes. This can be used to define the product in any category. Note that there is no guarantee that
the product exists in an arbitrary category, but it will be unique up to isomorphism if it does.

In this subsection, for any scheme S and any two S-schemes X — S and Y — S we will con-
struct a new scheme, denoted X x g Y, equipped with projection morphisms tx : X xgY — X and
mty : X Xg Y — Y satisfying a certain universal property.

Let C be category and S be a fixed object in C.

Definition 2.4.1 (Fiber product) The fiber product of f : X — S, g : Y — S (if it exists) is
an object X xgY € C with morphism tx, 7wy to X, Y. For any Z € C with morphisms 1, to X, Y
respectively (commuting with f and g as indicated in the diagram below), there exists a unique morphism
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Z — X x Y such that the whole diagram is commutative.

(1}
Z

XxgYy — ™ Ly

X

|

Notation and convention 1) We note the unique morphism Z — X xg Y by (¢, ¢2)s.

2) Wecall mx : X xgY — X the first projection, and 7y : X XgY — Y the second projection.
Example 2.4.1 For sets or topological spaces X xsY = {(x,y) € X x Y| f(x) = g(y) }.

Theorem 2.4.1 The fiber product X xg'Y is unique if it exists. In other words, if Z and T are two fiber
products satisfying the above characteristic property, then Z and T are canonically isomorphic.

Proof. Let Z and T be two fiber products satisfying the above characteristic property. In particular T
comes together with morphisms to X and Y. As Z is a fiber product, we get a morphism ¢ : T — Z

T

5

-

||

So that this diagram commutes. By symmetry we get a morphism ¢ : Z — T as well. The diagram

2

Y
S
is then commutative by construction. But the same diagram is commutative too if we replace ¢ o ¢ by

idz. The universal property when considering Z as a fiber product, we have ¢ o ¢ = id. Moreover, by
symmetry ¢ o ¢ = idr. So Z and T are canonical isomorphic.

In particular, the fiber product is defined in the category of schemes, i.e., by taking C = Sh, is defined in
the following way :
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Definition 2.4.2 Let X, Y, S be schemes with morphisms f : X — S, and ¢ : Y — S. The fiber
product of X and Y over S is a scheme X xgY with morphisms mx, Ty

XXSY

X Ty

7N
N/

S

making the diagram commutative, along with the universal property that for any scheme Z with mor-
phisms 1, Py to X and Y, respectively, such that f o 1 = g o iy, there exists a unigue morphism
¢:Z — X xgYsuchthat y = mxo¢pand Py = my o ¢

Z

LA [}

XXSY

X Ty

-
pA

/
\

Proposition 2.4.1 Fibre products exist in the category of schemes.
Proof. See [12, Theorem 3.3, p.87].

Consequence. 2.4.1 If X = Spec(A), Y = Spec(T) and S = Spec(R), where A, T and R are
commutative rings, f,g make A and T into R-algebras, and we have X xsY = Spec(A®g T)

Remark 2.4.1 Observe that if S C T is an open subscheme, then X xtY = X xgYasifj:S — T
is the natural inclusion morphism, then f o, = goyp ifand only if jo fop; = jo go . Also
observe that if V is an open subset of X, then U xgY = 71;(1 (V) C X xgY. Indeed, U xgY is an open
subscheme of X xgY.

Proposition 2.4.2 Let f : X — Sand g : Y — S be morphisms of schemes. Suppose that U C S,
V C X, W C Y are opens subschemes such that f(V) C U and g(W) C U. Then the canonical
morphism V xy W — X Xg Y is an open immersion which identifies V xy W with n)}l(V) N

n;l(W).

Proof. Let Z be a scheme. Suppose that ¢1 : Z — V and ¢, : Z — W are morphisms such that
f o @1 = go @y as morphisms into U. Then they agree as morphisms into S. By the universal property
of fibre product we get a unique morphism ¢ : Z — X X Y. Moreover, ¢ has image contained in the
open 1 (V) Nty {(W). Thus 7ty (V) Nty H(W) is a fibre product of V and W over U. The result
follows from the uniqueness of the fibre product.
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Basic properties of the fibre product
Proposition 2.4.3 Let X,Y and Z be schemes over S. Then :
i) (Reflectivity) X xg S ~ X.
ii) (Symmetry) X xgY =Y xg X.
iii) (Associativity) (X xsY) XsZ ~ X x5 (Y x5 2Z).
If S’ is a scheme over S and we assume that Y is as well a scheme over S/, then

iv) (Transitivity) X xS x g Y = X XgY, where X Xg S is a scheme over S' via the projection onto
S and Y is a scheme over S via the map S — S.

v) Let f1: X3 — Xand g1 : Y1 — Y two S-morphisms. There is a unique morphism f1 X g1 :
X1 Xs Y1 — X xg Y such that the two squares in the diagram commute

X x4 X Ty,
1 & &1 Xg Yl E— Yl

flk lfl X g1 lgl

X« ™ XxgY — X .y

Proof. All there properties follow from the universal property of the fiber product.

Fibres

Definition 2.4.3 Let f : X — S be a morphism of scheme and s € S be a point. The scheme theoretic
fibre X of f over s, or simply the fibre of f over s, is the scheme fitting in the following fibre product
diagram

X5 = Spec(k(s)) xs X > X
Spec(k(s)) > S

In particular, the fibre X is a scheme over k(s).

Proposition 2.4.4 The map 7wy : Xs — X is a homeomorphism between Xs and f~1(s).

Proof. Without loss of generality, we may assume S = Spec(R), X = Spec(T), and f is induced
byp : R — T. Lets € S be defined by the prime ideal q. We have k(s) = k(q) = Rq/qR,.
So X; = Spec(k(s)) xs X = Spec(Rq/qRq @r T) = Spec(Ty/qTy). Elements of Spec(Tq/qTy)
correspond bijectively to primes p of T such that P(q) C p, and p does not intersect (R \ q). This is
equivalent to p~1(p) = q. So the map rtx : Xs — f~1(s) is a bijection. Since Spec(Ty/qTy) —
Spec(Ty) —> Spec(T) are successive embeddings, and f~1(s) is endowed with the subspace topology,
1t is a homeomorphism.

Remark 2.4.2 We may view a morphism f : X — S as family of fibers X parameterized by s € S.

Example 2.4.2 Let X := Spec( KXY, Z] ) and S := Spec(k[Z]). We have the inclusion k[Z] —— KXY, Z]

(ZY—X2) " (ZY-X2)
so we get a continuous map § : X — S. By identifying the closed point of S with elements of k, for
b€k, b#0, Xp=is the plane curve defined by bY = X>.
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Base change
Definition 2.4.4 Let X, S, and S’ be schemes. We define Xs := X X ¢ S, the following diagram

US'¢

XS y X

Ttg g

S

%))

is called the base change of g to S via f.
Remarks 2.4.1 1) The above definition generalises the idea of changing the "base coefficients”.

2) Leth : Y — S,and let ¢ : X — Y be a S-morphism, then there is an induced morphism
Yo =P xidy from Xg to Yo over S', making the following diagram

l/JS/ Tl ,

y Ys’ > S
‘/ﬂy g
P

X Y% h S

X
TX

~

commutative.

Example 2.4.3 Let S = Spec(R), then AY := A X spec(z) S is a base change of A (:= Spec(Z[Th, ..

Spec(Z) to X via S — Spec(Z).

Definition 2.4.5 We say that a property ‘P of morphism of schemes is stable under base change if for
any morphism X — S verifying P, X x5 S also verifies P for every S-scheme S’

2.4.2 Dimensions of schemes

Recall that the Krull dimension of a ring R is defined as the supernum of length of all strictly ascending
chains of prime ideals in R.
Recall also that the dimension of a topological space X is the supernum of all integers d such that there
exists a chain

ZoC...C Z,

of distinct irreducible closed subsets of X.

Definition 2.4.6 Let X be a scheme. We define the dimension of X to be the dimension of its underlying
topological space.

Proposition 2.4.5 Let X = Spec(R) be an affine scheme. The dimension of X equals the Krull dimen-
sion of R.

Proof. Let Zy C --- C Z, be a chain of distinct irreducible closed subsets of X. By proposition 2.2.8,
the Z; are the form V (P;), for some P; € Spec(R). Moreover, by theorem 2.2.2 i), we have j(V (P;)) =
rad(P;) = P; for all i. Also, for all i, the fact that Z; C Z;q implies j(Zi11) = Pir1 € j(Z;) = P
Hence, we get a chain of strictly ascending prime ideals of R

PG C R

 Tw]) —
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Let Q; = P,_;, then we have
Q& & Q.

Hence dim(X) < dim(R). Conversely, let Py C --- C Py, be a strictly ascending chain of prime ideals
of R. Applying V (.), we get a chain of irreducible closed subsets of X

V(Py) G-+ S V(R).
Set Z; = V(P,_;), we get a strictly ascending chain
Zo G G Zn
of irreducible closed subsets of X. Hence dim(R) < dim(X).
Remark 2.4.3 Recall that, if R is a Noetherian ring, then dim(R[T]) = dim(R) + 1.

Examples 2.4.1 1) If R is a Noetherian ring, then the dimension of A% = Spec(R[Ty,..., Ty))
equals m + dim(R).

2) dim(Spec(Z)) = 1. all maximal chain have the form V (P) C V(0) = Spec(Z).
3) Ifk is a field, then we dim(k) = 0. So dim(Spec(k)) = 0.

Remark 2.4.4 Let X be a scheme.
i) If Y C X is an open or a closed subscheme, then dim(Y) < dim(X).

ii) Let X = U;c; Spec(R;) be a scheme dim(X) = Sup;(dim(Spec(R;)) (see proposition 1.2.1 1)).

Codimension
Let X be a topological space, and let Z C X be an irreducible closed subset of X.
« The codimension codim(Z, X) of Z is defined to be

Sup{m | there exists a strictly ascending chain Z = Zo C - -+ C Zy,, of irreducible closed subsets of X }.

x If Z is an arbitrary closed subset, we define its codimension as

inf{codim(Z ,X)|Z isan irreducible and closed subset of X}.

By the correspondence between closed subsets and prime ideals (see theorem 2.2.2), the codimension of
V(P) in Spec(R) is the height of the prime ideal P of R.

Proposition 2.4.6 Let X be scheme, x € X be a point and set Z = {x}. Then dim(Ox,) =
codim(Z, X)

Proof. Let Z C Zy C - -- C Z, be a chain of distincts irreducible closed subsets of X, then for any open
neighborhood V of x the generic points y1,...,Yr of Z; are contained in V. We can assume that V =

Spec(R) is an affine open of x, then the generic points correspond to prime ideals (of R) P, C --- C Py =
P, where P is the prime ideal corresponding to x(€ V). in R. Therefore, dim(Ox ) = codim(Z, X).
2.5 Local and global properties of schemes

In this section, we survey some of the main geometric properties of schemes.
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2.5.1 Noetherian schemes

Definition 2.5.1 i) A scheme X is called locally Noetherian if X admits an affine open covering
X = Uje Xi such that Ox(X;) is a Noetherian ring for all i.

ii) A scheme X is called Noetherian if it is compact and locally Noetherian, where X is compact means
that every open covering of X has a finite subcovering.

Remarks 2.5.1 1) Recall from lemma 2.2.6, that for any commutative ring R, Spec(R) is compact.
So an affine scheme is compact.

2) In general a scheme is Noetherian if and only it can be covered by finitely many open affine schemes
Spec(R;), where each R; is Noetherian.

Lemma 2.5.1 Let R be a Noetherian ring and S be a multiplicatively closed subset of R. Then S™IR is
a Noetherian ring.

Proof. See [3, Proposition 7.3, p.80 ].

Theorem 2.5.1 Let X be a scheme. Then X is locally Noetherian if and only if for any open subset U
of X, which is isomorphic to an affine scheme (Spec(R), Ospec R)) as locally ringed space, the ring R is
Noetherian.

Proof. By simple logical reductions using lemma 2.5.1 and proposition 2.2.2, the statement of the theo-
rem can be shown to be equivalent to the following statement in commutative algebra. Let R be a ring,
let g1,...,8r € Rbesuchthatl e (g1,...,8r) i.e R = (g1,...,8r). If Ry, is Noetherian for all i, then
R is Noetherian. This is what we shall prove.

Let ; : R — Ry, be the natural homomorphism and | be an ideal of R. Then we have

I = Niegr,...y ¥ (Wi()Rg;) (2.4)

where ;(J)Ry, is the ideal in Ry, generated by ;(]). Now, from the assumption that (g1, ...,8r) = R,
and by proposition 2.2.1 5) we seen that there are element b; € R such that

Z blg?H_” _

Thus c € |. Now consider an ascending chain of ideals of R

hEh<e
Forallie {1,...,r}
¢i(]1)Rgi - lpi(]Z)Rgi c.-- (25)
is an ascending chain of ideals of Rg,, which must become stationary because Rq, is Noetherian, since
there are only finite many Ry,, we conclude from the above that |1 C |, C - - - is stationary. Hence R is

Noetherian.

Proposition 2.5.1 Let R be a commutative ring. Then Spec(R) is Noetherian if and only if R is Noethe-
rian.

Proof. =) You should think of this as a purely algebraic fact : Refining the cover, we can assume that
for each i, we have X; = Ry,. As in the proof of theorem 2.5.1 R is Noetherian provided that each
localization R 18 Noetherian, and 1 € (fy,..., fr).

<) This follows from theorem 2.2.2.
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Proposition 2.5.2 Let X be a Noetherian scheme, then its underlining topological space is Noetherian.

Proof. Since X is compact, then we can write X = Uj_y X;, where (X;, Ox;) =~ (Spec(R;), Ospec;(r,))-
A descending chain
2127252 - (2.6)

gives rise to a chain foralli € {1,...,r}
ZiNX,2ZoNX; 2D --- (2.7)

of closed subsets in X;. Since X; are Noetherian, this last chain is stationary. Since we have only a finite
number of indices i, this implies that X is Noetherian.

Proposition 2.5.3 Let X be a locally Noetherian scheme. Then any closed or open subscheme of X is
also locally Noetherian.

Proof. Without loss of generality, we may assume that X is Noetherian. We can consider an open cov-
ering (X;)icr of X such that Vi, X; = Spec(R;), where each R; is Noetherian.

Let Z C X be an open or closed subset, we will show that Z N X; is Noetherian. Since Z N X; is
an open or a closed subset of an affine scheme, we reduce our statement to considering the case where
X = Spec(R).

If Z is open, by theorem 2.2.1, there are elements f1,...,fr € R such that Z = U._{D(fi) =
Ui=1 Spec(Ry,). Since R is Noetherian, then by lemma 2.5.1, for all i, Ry, are Noetherian, and so by
proposition 2.5.1, Spec(Ry,) is Noetherian. It follows that Z is also Noetherian.

If Z is closed, we have Z = V(]) for some ideal ] C R. We know that if R is Noetherian then R/ is
also Noetherian. So Spec(R/ ) is Noetherian, and by proposition 2.2.4, Spec(R/ ] ) is homeomorphic to
V(]). Hence Z is Noetherian.

Definition 2.5.2 Let f : X — Y be a morphism of schemes.

i) f is called locally of finite type if for every affine open U = Spec(R) C Y, f~1(U) = U; V;j with
each V; = Spec(A;) affine open subset of X, with A; a finitely generated R-algebra.

ii) f is called compact if Y = \J; Y; with Y; open affine subschemes of Y that f~1(Y;) is compact for
all i.

iii) f is called of finite type if f is locally of finite type and compact.

iv) fis called finite if Y = \J; Y; with each Y; = Spec(R;) affine open subschemes of Y where A; is a
finite R;-algebra.

v) fis called affine if Y = U; U; with U; = Spec(R;), an affine open subscheme of Y such that
F~Y(W;) is also affine.

Remarks 2.5.2 1) Recall that an R-algebra A is finite if A is finitely generated as an R-module.

2) Finiteness is transitive : The composition of finite morphisms is finite. This follows from the fact
that finite generation of modules is transitive.

3) The base change of a morphism which is locally of finite type is locally of finite type. The same is
true for morphisms of finite type (see [30]).
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4) We have the following implications :

affine

finite compact

of finite type

locally of finite type

Examples 2.5.1 1) Spec(Q) — Spec(Z) is not locally of finite type.
2) Let R be a ring. Then A" — Spec(R), and P" — Spec(R) are both of finite type.

2.5.2 Irreducible schemes

Definition 2.5.3 A nonempty scheme is connected if its underlying topological space is connected, i.e
cannot be written as a disjoint union of two nonempty open sets.

Proposition 2.5.4 Let X = Spec(R) be an affine scheme. The following assertions are equivalent :
1) X is connected.

2) The only idempotents of R are 0 and 1.

Proof. 1) = 2) Assume that X is connected. If R contains an idempotent element r such that r # 1,0,
then we have R = r- R x (1 —r) - R and both rR and (1 — r) - R are non trivial subrings of R. Hence
Spec(R) = Spec(rR) x Spec((1 —r) - R) ~ Spec(rR) 1] Spec((1 —r) - R). So X is not connected.

2) = 1) Assume that 0,1 are the only idempotent of R. If X is not connected, then X = X1 [ Xo with
X; C X nonempty opens. We then have Ox(X) = Ox(X1) x Ox(X2). As X; are nonempty, then

—=

Ox(X;) are non trivial rings. In particular, (1,0) is a non trivial idempotent of R. A contradiction.

Definition 2.5.4 Let X be a scheme, we say that X is irreducible if its underlying topological space is
irreducible.

Remark 2.5.1 Plainly, irreducible topological spaces are connected.
Examples 2.5.2 1) Let k be an algebraically closed field. A}* = Spec(k[Ty, ..., Ty]) is irreducible.
2) X=k[X,Y], Z=V(XY)=V(X)UV(Y). Then Z is not irreducible.

Proposition 2.5.5 Let X = Spec(R) be an affine scheme. Then X is irreducible if and only if N(R) is
a prime ideal.

Proof. See proof of theorem 2.2.4.

Recall again the following terminology : Let X be a topological space and let x,y € X, we say that x is
a generic point if {x} = X (see definition 2.2.3). An irreducible component of X is maximal irreducible
closed subset of X. y is a specialization of x (x specializes to y) ify € {x}.
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Examples 2.5.3 1) Let X be an affine scheme, and let P € X, then P = V(P). Moreover, P is the

only generic point of V(P).

2) Let R be a domain, then (0) is only generic point of Spec(R).

Proposition 2.5.6 Let X be a scheme. Then :

1)

2)

3)

Every irreducible closed subset of X has a unique generic point.

For any generic point x € X, {x} is an irreducible component of X. Moreover, there exists a
bijection between the set of irreducible components of X and the set of generic points of X.

For any x € X, there exists a bijection between the set of irreducible component of Spec(Ox )
and the set of irreducible components of X containing x.

Proof. 1) Let Z be an irreducible closed of X. Assume that X is affine scheme i.e X = Spec(R) for

2)

3)

some ring R. By proposition 2.2.8 Z is irreducible if and only if Z is of the form Z = V(P), for
some prime ideal P of R. By example 2.5.3, P is the only generic point of Z.

Now, for X an arbitrary scheme, let the only x € Z, then x has an affine neighborhood V in X.
Since Z is irreducible then Z NV C Z is irreducible and dense i.e ZNV = Z. By the above,

Z NV contains a generic point x,, which is also a generic point of Z. If yo € Z with {yo} = Z,
then yo € Z NV and it follows immediately (from the affine case above) that xo = yo.

Let Z be an irreducible component of X, and xy € Z be its generic point. We claim that xq is a
generic point of X, that is no point other then x( can specialize to x : if yo specialize to xq then

xo € {yo}, hence Z = {xo} C {yo}. Since Z is a maximal irreducible closed subset of X, then
{xo} = ﬂ(’}’ hence xo = yo. This shows that xg is a generic point of X. It is easy to check that
x — {x} is a bijection from X onto the set of irreducible components of X.

We may assume that X = Spec(R), with x € X corresponding to a prime ideal Py of R. By
the correspondence between irreducible closed subsets and the prime ideals of R (see lemma 2.2.2
and proposition 2.2.8), an irreducible component of X corresponds to a minimal prime ideal of
R. Hence the irreducible components of X containing x are in one-to-one correspondence with
minimal prime ideals of R which are contained in Py, or still with the minimal prime ideals of
Rp, = Ox y, that is the irreducible component of Spec(Ox ).

2.5.3 Regular schemes

Recall that, a local Noetherian ring (R, m) is said to be reqular if dim(R) = dimy(m/m?), where

k =

R/m. Recall also that R is reqular if and only if every local ring Rp of R is reqular. For more

details we refer to [3, Theorem 11.22].

Definition 2.5.5 Let X be a locally Noetherian scheme, and let x € X be a point.

i)
i1)
ii1)

iv)

We say that X is reqular at x, or x is a regular point of X if Ox  is regular.
We say that X is reqular if X is reqular at all points.
A point x € X which is not reqular is called a singular point of X.

A scheme that is not reqular is said to be singular.

Remark 2.5.2 For i) equivalently, X is reqular at x if there exists an affine open neighbourhood U C X
of x such that the rings Ox(U) is Noetherian and reqular.
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Proposition 2.5.7 Let X be a scheme. The following are equivalent :
1) X is reqular.
2) For every open U C X, the ring Ox(U) is Noetherian and reqular.

3) There exists an affine open covering X = ;e U; such that each Ox(U;) is Noetherian and
reqular.

4) There exists an affine open covering X = \J; X; such that each open subscheme X; is regular.

Proof. 1) = 2) Let U be an open subset of X. By theorem 2.5.1 Ox(U) =~ (Spec(R), Ogpec(r)) a5
locally ringed space for some Noetherian ring. By theorem 2.2.3 Spec(R) is Noetherian. So Ox(U) is
Noetherian. Since X is regular, then in particular it is reqular at all point of U, so necessarily for any
prime ideal Q of R, Rq is regular, so R is regular.

2) = 3) Clear.

3)= 4) Immediate.

4) = 1) Assume that X = \J; X; with X; regular for all j. Let jo such that x € Xj,. Since Xj is regular
at x, then x is a regular point of X.

Corollary 2.5.1 If X is a reqular scheme, then every open subscheme is regular.

Corollary 2.5.2 Let X be a Noetherian scheme, then X is reqular if and only if X is reqular at all its
closed points.

Proof. If X is reqular, then X is regular at all points of X. In particular, X is reqular at all closed points.
Conversely, note that, as X is Noetherian any closed subset of X admits a closed point. One can deduce
that X is regular.

Definition 2.5.6 Let X be a locally Noetherian scheme. We denote the set of reqular points of X by
Reg(X), and we denote the set of singular points by Sing(X).

Remark 2.5.3 Let X = Spec(R) be a Noetherian affine scheme. Then Spec(R) is reqular if and only if
forall P € Spec(R), Ox p ~ Rp is reqular if and only if R is regular.

2.54 Reduced and integral schemes

Reduced schemes

Recall that a commutative ring R is said to be reduced if it has no nilpotent elements, i.e the only nilpotent
element of R is 0. Recall also that R is called integral if for any a,b € R such that ab = 0, we have a = 0
orb = 0.

Definition 2.5.7 Let X be a scheme.
i) X is called reduced at point x, if the local ring Ox y is reduced.

ii) X is called reduced, if it is reduced at all points.

Proposition 2.5.8 Let X be a scheme. Then X is reduced if and only if for each nonempty open U C X,
the ring Ox(U) is reduced.

Proof. Assume that X is reduced and let U be an open subset of X. We want to show that Ox(U) is a
reduced ring. Let f € Ox(U) be a section of U and suppose that f™ = 0, for some positive integer m.
Plainly, the canonical image fy of f in Oy y is also nilpotent, so f, = 0. Since Oy is a sheaf, then by
definition 2.1.6 i) f = 0. The converse is clear.
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Recall a direct limit of reduced rings is also reduced.

Proposition 2.5.9 Let X = Spec(R) be an affine scheme, then X is reduced if and only if R is reduced.

Proof. If X is reduced by proposition 2.5.8 Ox(X) is reduced and by proposition 2.3.1 3) Ox(X) ~ R.
So R is reduced. Conversely, suppose that R is reduced and let P € Spec(R). By proposition 2.3.1 3)
we have Ox p ~ Rp. Moreover, we know that any localisation of a reduced ring is reduced. So, Ox p is
reduced.

Remark 2.5.4 Let X be an affine schemei.e., X = Spec(R) for some ring R, then X,y := Spec(R/N(R))
is a reduced scheme.

Integral schemes
Definition 2.5.8 Let X be a scheme.

i) We say that X is an integral at x € X if Ox y is integral domain.

i) If X is integral at all points of X, and X is irreducible, then we say X is integral.

Proposition 2.5.10 Let X be a scheme. Then X is an integral if and only if Ox(U) is an integral
domain for every open subset U of X.

Proof. Assume that X is integral, U be an open subset of X, and let f,¢ € Ox(U) such that fg = 0.
For x € X, let f(x) be the image of f in k(x). X¢:={x € U| f(x) =0}, and X; = {x € U[g(x) =
0}. X and Xq are two closed subsets of X. Indeed, it suffices to see that X is closed in any affine open
subset W = Spec(R) of U. We have Xy "W = V(f), and X "W = V(g). So Xy and X¢ are closed
in W. By lemma 1.3.1 Xy and Xg are closed in X. Moreover, we have Xy U X = U, since fg = 0.
Because U is irreducible, then Xy = U or X = U. We can assume Xy = U. We claim that f = 0.
Indeed, we only need to show that fy, = 0 for any affine open V. C U. But f|y € N(Ox(V)) which is
reduced. So fy = 0. Hence f = 0. Conversely, assume that Ox (U) is integral for any nonempty open
U of X. In particular, all local rings Ox  are integral. It remains to check that X is irreducible. Write
X = X7 U Xy with X; two closed subsets of X such that X; C X. Let V; = X \ X;, i = 1,2 which is
open in X. Moreover, we have V1 NV, = @. Hence Ox (V4 U V;) = Ox(Vh) x Ox(Va). In particular
Ox(U), where U = V1 U V,, is not integral. A contradiction.

Proposition 2.5.11 Let X = Spec(R) be an affine scheme, then X is integral if and only if R is integral
domain.

Proof. If X is integral, then by proposition 2.5.10 we have for any open subset U of X, Ox(U) is an
integral domain. In particular, for U = X we get R(= Ox(X)) is integral domain. Conversely, Assume
that R is integral domain, then N(R) is a prime ideal, so by theorem 2.2.4, Spec(R) is irreducible. Now
let P € Spec(R), then Ox p being the localization of integral domain is also integral domain.

Example 2.5.1 Let Z = Spec(k[Ty, ..., Tu]) be an affine scheme, then X is integral.
Proposition 2.5.12 Let X be a scheme. Then X is integral if and only if it’s reduced, and irreducible.

Proof. Assume X is integral. Clearly it is reduced. If X is reducible then there exist closed subsets
X1, Xp of X such that X = X1 U Xy, take U; = X \ X; for i = 1,2, which are disjoint open subsets of X.
Then Ox (U UUy) = Ox(Uy) x Ox(Uy), which is not an integral domain. A contradiction. Now,
assume X is reduced and irreducible. Let U C X be open and assume that f,g € Ox(U) with fg = 0.
Let
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Xp={xeU|fx € my}, and Xg = {x € U| gx € my}
For any affine open W = Spec(R) C U, we have

(fiw)x € my ifand only if x € V(f|w).

Thus, X NW = V(f) and X¢ N W = V(g). So Xy and X¢ are closed. Moreover, we Xy U Xg = U.
But X is irreducible, so U is irreducible as well (see proposition 1.1.3). We can then assume that Xy = U.
But then in R, f is in every prime ideal, so f is nilpotent. So f = 0. Hence X is integral.

Lemma 2.5.2 Let X be an integral scheme with a generic point €. Then :
i) k(X) := Oxe is a field (called the function field of X).
ii) For any open subset U of X, the natural maps Ox(U) — Oxe, and Ox, —> Ox. are
injective.

Proof. i) To see that Ox . is a field, we may take an arbitrary nonempty open affine subset U =
Spec(R) of X observe that Ox, = Rq) which is the fractions field of R.

ii) We may reduceour proof to the case where U = Spec(R) is affine. In this case Ox(U) = R —»
Frac(R) = Ox is injective.

Corollary 2.5.3 Let X be an integral scheme, W C U be open subsets of X, then the restriction map
Ox(U) — Ox (W) is injective.

We say that an element f € k(X) is defined (or reqular) in the point x if f € Ox .

Proposition 2.5.13 Let X be an integral scheme and let f € k(X). Theset Uy := {x € X|f € Ox}
where f is defined, is open.

Proof. Let x € Uy and let V := Spec(R) be an affine neighbourhood of x. Consider the ideal I¢ :=
{a € R|af € R}. If P is a prime ideal of R, then f € Rp if and only if [ ¢ P that is, V(If) is the
complement of Uy N Spec(R).

Proposition 2.5.14 Let X be an integral scheme with function field k(X). Then

Ox(U) = () Oxx = {f € k(X)| f can be represented as ‘%, where h(x) # 0,Vx € U}(C k(X)).
xel

Proof. Clearly, we have Ox(U) C Nyey Ox x. Conversely, by the sheaf condition, and the injectivity
proved in lemma 2.5.2 ii), we may assume that U = Spec(R) is an affine open. Then we are reduced
to prove that R = (\pespec(r) Rp, seen as a subring of Frac(R). Indeed, for f € Frac(R) such that
f € Npespec(r) Rp, then for P € Spec(R), there exists (ap,bp) € R x (R \ P) such that f = Z—llj. As
R is integral domain, we deduce then fbp € R. If we take {bp, P € Spec(R)}, which generates the unit
ideal. So one can find cp € R, almost all zero, such that 1 = Y pcpbp, so f = Y pcpfbp = Y .pcpap.
This gives the result.

Remark 2.5.5 If X = Spec(R), then
1) Ox(D(f)) = {fim |a € R,m >0} C Frac(R).

2) Oxx={L|f,.g€ R g ¢ P}

Examples 2.54 1) The function field of A}* = Spec(k[Ty, ..., Tul]) is k(T1,..., Tn).



90

2) The function field of Spec(Z) is Q.
Let X be an integral scheme of finite type. We can study the dimension of X in terms of the function field:

Proposition 2.5.15 Let X be be integral scheme of finite type over field K with function field k(X).
Then

1) dim(X) = tr.degx (k(X)).
2) For any open subset U of X, we have dim(X) = dim(U).
3) If Z is a closed subset of X, then
codim(Z,X) = inf{dim(Ox ) |z € Z} and dim(X) = dim(Z) + codim(Z, X).
In particular, for a closed point x of X, we have dim(X) = dim(Ox x).

Proof. 1) We may assume that X = Spec(R) is affine X. Since X is of finite type, then R is
a finitely generated K-algebra, with the quotient field K := k(X). By theorem 1.2.2, we have
dim(R) = tr.degx(Frac(R)), and by proposition 2.4.5, we have dim(R) = dim(Spec(R)). So,
dim(X) = tr.degg(Frac(R)).

2) Let U be an open subset of X. As X and U have the same function field, and by 1) dim(U) =
dim(X).

3) We may assume that X = Spec(R), where R is a finitely generated K-algebra and then use the
formula dim(R/P) + ht(P) = dim(R) for any prime ideal of R.

Example 2.5.2 dim(IP}') = dim(A}') = m.

2.5.5 Normal schemes

A normal domain is a domain which is integrally closed in its field of fractions. Recall that a ring R is
said to be normal if all its local rings are normal domains. Thus it makes sense to define a normal scheme
as follows.

Definition 2.5.9 Let X be a scheme.
i) We say that X is normal at x € X if the local ring Ox y is a normal domain.

ii) We say that X is normal if its is irreducible and normal at all x € X.

Proposition 2.5.16 Let X be a scheme. The following are equivalent.
1) X is normal.

2) For every open U C X the ring Ox(U) is a normal domain.

Proof. 1)= 2) Suppose that X is normal. Let U be an open of X. The scheme X integral, so Ox(U)
is an integral domain. We may assume that U is affine, i.e., U = Spec(R) for some ring R. As X is
normal then U is normal, so for any prime ideal of R, the localization Rp is normal. So R is normal.
Hence Ox(U) is a normal domain.

2)=1) Let x € X, and let U be an open neighborhood of x. Then Ox(U) is a normal domain. So, Ox 4
is normal domain. Hence X is normal at x.

Corollary 2.5.4 If X is normal. Then :
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i) There exists an affine open covering X = \J;cr U; such that each Ox (U;) is normal.

ii) There exists an open covering X = |J;c1 X; such that each open subscheme X; is normal.
Example 2.5.3 A]" and IP;" are normal schemes.
Proposition 2.5.17 Let X be a normal scheme. Then X is reduced.

Proof. Let x € X. Since Ox y is a normal domain, then Ox , is domain, so the only nilpotent element
of Ox x is 0, so X is reduced.

Definition 2.5.10 Let f : X — Y be a morphism of schemes. We say that f is dominant if the image
of fisdenseinY.

If X and Y are integral, f is dominant is equivalent to saying that the generic point of X maps to the
generic point of Y. In this case, f* induces a map from the stalk Oy g to Ox,, where € and p are the
generic points in X and Y, respectively. But by lemma 2.5.2 the stalks at the generic points are the
function fields k(X) and k(Y. Hence we obtain a map ¢* : k(Y) — k(X), which is injective.

Proposition 2.5.18 Let f : X — Y be a morphism of integral schemes. Then the following are
equivalent :

1) f is dominant.

2) For every affine open subsets U C X, V. C Y such that f(U) C V, the ring homomorphism
1 0y(V) — Ox(U) is injective.

3) Forall x € X, the local homomorphism fﬁ : Oy f(x) — Ox,x I8 injective.

Proof. 1)< 2) We may assume that U = X = Spec(R), and V. =Y = Spec(A) and that f is induced
by a homomorphism ¢ : A — R of integral domains. We see that f maps the generic point to the
generic point if and only if ~1(0) = (0) which holds true if and only if P is injective.

2)=3) Let x € X Taking U be an affine open neighborhood of x, and V also an affine open neighborhood
of f(x) such that f(U) C V. By ii) f* : Oy (V) — Ox(U) is injective. Then by proposition 2.1.2 the
induced morphism to stalks is also injective. Hence fﬁ : Oy f(x) — Ox,x I8 injective.

3)= 2) Suppose that for any x € X, f,g 0 Oy fx) — Oxx is injective. By proposition 2.1.2 £
is injective, so for any affine open U of X, and affine open subset V of Y such that f(U) C V, f* :
Oy (V) — Ox(U) is injective.

Theorem 2.5.2 Let X be an integral scheme, then there is a normal scheme X, and a morphism 1T :
X — X satisfying the following universal property : For any dominant morphism g : Y — X from a
normal scheme Y, there is a unique morphism h : Y — X such that ¢ = mx o h.

Proof. See [17, Proposition 1.22, p.120].

Definition 2.5.11 The scheme X over X is called the normalization of X.

Remark 2.5.6 X and X have the same dimension.

Example 2.54 Let X = Spec(R) where R = k[X,Y]/(y* — X3). There is an isomorphism of k-
algebras between R and k[t?,t3] given by sending X —— t2 and Y — 3. It is clear that k[t?,t%] is a

domain with fraction field K = k(t). Moreover, the normalization of R equals R = k[t]. The inclusion
R — Rinduces the normalization morphism f : A} — X.
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2.5.6 Separated Schemes

Recall that a topological space X is separated (or Hausdorff) if and only if the diagonal subset A(X) of
X x X is a closed with respect to the product topology. The separation property fails on the underlying
space of a scheme. So, one needs to refine the notion of separation to suite this context. For this, given
a scheme X over a scheme S (with a morphism of schemes f : X — S), let’s consider the diagonal
morphism

Ax /S ¢ X — XxgX

defined to be the unique morphism of schemes such that
;0 Ay /s = idx,i = 1,2, where 7}s denote the two projections X xg X — X.

In terms of diagram we have the following diagram

Definition 2.5.12 Let f : X — S be a morphism of schemes. f is called an immersion if f factorizes
as X — U — S, where X — U is closed immersion and U — S is open immersion.

Lemma 2.5.3 Let f : X — Y be an immersion of schemes. Then f is closed immersion if and only if
f(X) C Yisaclosed subset.

Proof. See [30, Lemma 26.10.4].
Lemma 2.5.4 If X and S are affine schemes. Then Ay s : X — X X g X is a closed immersion.

Proof. Let X = Spec(R), S = Spec(A) and f : X — Y be a morphism. f is separated. Axs :
Spec(R) — Spec(R) X gpec(a) Spec(R) = Spec(R @4 R) is induced by the canonical homomorphism
of rings A : R®4 R — R. The latter is surjective, hence Ay /s is a closed immersion.

Proposition 2.5.19 Let X be a scheme over S. Then Ax /g is an immersion.
Proof. See [30, Lemma 26.21.2].

Let R be a ring, then the natural ring homomorphism Z — R, n — n - 1, induces a morphism of
schemes Spec(R) — Spec(Z) and so any affine scheme can be considered as a Z-scheme in a natural
way. More generally, any scheme X can be considered as Z scheme in a canonical way.

Definition 2.5.13 Let S be a scheme, and X an S-scheme with morphism f : X — S.

i) We say that f is separated if the diagonal morphism Ay s : X — X x g X is closed immersion.
In this case we say that X is separated S-scheme or X separated over S.

ii) A scheme is said to be separated if X separated over Spec(Z).

Example 2.5.5 Any morphism of affine schemes is separated. In particular any affine scheme is sepa-
rated.
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Proposition 2.5.20 Let f : X — S be a morphism of schemes. Then f is separated if and only if
Ax/s(X) is a closed subset of X xg X.

Proof. If f is separated, then Ay /s is a closed immersion. So A ;5(X) identifies with a closed of X x g X
(see definition 2.3.7). Hence Ax,s(X) is a closed. Conversely, as A : X — X xg X is an immersion
(see proposition 2.5.19), and N ;5(X) is closed. Then by lemma 2.5.3 Ay s is a closed immersion.

Proposition 2.5.21 Let f : X — S be a morphism of schemes with S = Spec(R) is affine. The
following are equivalent :

1) f is separated.

2) For every pair of affine opens U,V C X, U NV is again affine. Moreover, the canonical homomor-
phism Ox(U) @ Ox(V) — Ox(U N V) is surjective.

3) There exists an open affine covering X = Ujc; U; such that U; N U; is affine and the canonical
homomorphism Ox(U;) ® Ox(U;) — Ox(U; N U;) is surjective.

Proof. See [17, Proposition 3.6, p.100].

Theorem 2.5.3 i) Open and closed immersions are separated.

ii) Let f : X — Y, and g : Y — Z be two separated morphisms, then g o f is separated. In
particular, immersions are separated.

iii) Separated (resp. quasi-separated) morphisms are stable under base change.

iv) Let f : X — Y, and §g : Y — Z be morphisms such that g o f is separated (resp. quasi-
separated). Then f is separated (resp. quasi-separated).

v) A fibre product of separated (resp. quasi-separated) morphisms is separated (resp. quasi-separated).

Proof. See [17, Proposition 3.9, p.101].

2.5.7 Proper morphisms

In topology, a proper morphism is a morphism for which the inverse image of a compact Hausdorff'
subspace set is compact Hausdorff. As above, the lack of good separation for the Zariski topology means
one needs to use a some new notion on schemes.

Recall that a map of topological spaces f : X — Y is said to be closed if for any closed subset Z of X,
its image f(Z) C Y is closed.

Definition 2.5.14 Let f : X — Y be a morphism of schemes
i) f is said universally closed if every base change of f is a closed mapping.

ii) f is said to be proper if f is separated, of finite type, and universally closed. We say in this case
that X is proper over Y.

iii) We say that X is proper if X is proper over Spec(Z.).

In 1) f is said universally closed if for each morphism Z — Y, the projection wy : Z Xy X — Z is
closed.

T A topological space X is compact Hausdorff if X is Hausdorff space and for every open cover of X has a finite subcover.



94

Examples 2.5.5 1) Closed morphisms are not stable under base change. For example, A} —
Spec(k) is closed but A? = Al x Ay — AL, which is not closed. Indeed, the image of
V(xy — 1) is the open subset A} \ {0}, which is not closed.

2) Let f : R — A be a homomorphism of rings such that A is a finite R-module, then the induced
map Spec(A) — Spec(R) is proper.

Proposition 2.5.22 Let f : X — S be a morphism of schemes. The following are equivalent :

1) f is proper.

2) There exists an open covering S = ;e U; such that f~1(U;) — U, is proper for all i € 1.
Proof. See [30, Lemma 29.41.2].

Theorem 2.5.4 We have the following properties :
i) Closed immersions are proper.
ii) The composition of two proper morphisms is proper.
iii) The base change of a proper morphism is still proper.

iv) The product of two proper morphisms is proper : if f : X — Y and g : X' — Y are proper,
where all morphisms are morphisms of S—schemes, then f x g: X xg X — Y xg Y is proper.

Proof. See [12, Corollary 4.8, p.102].

2.5.8 Projective Schemes

We know that projective varieties are a special important class of varieties that are not affine, but still can
be described globally without using glueing techniques. They arise from looking at homogeneous ideals,
i.e., graded coordinate rings. A completely analogous construction exists in the category of schemes,
starting with a graded ring and looking at homogeneous ideals in it.

The Proj construction

The functor Spec is the basic operation going from rings to schemes. We describe a related operation Proj
from graded rings to schemes.

Definition 2.5.15 Let R be graded ring of the form R = @©;>9R; and let Ry := @;-0R,.

i) We denote by Proj(R) the set of homogeneous prime ideals P C R such that P does not contain
R.. It is called the projective spectrum of R.

ii) For a homogeneous ideal |, we let

Vi(J) = {P € Proj(R) | ] € P}.

Remark 2.5.7 The operation Vj, has properties analogous to the properties for V listed in proposition
2.2.1. So we can define a topology on Proj(R) for which the closed subsets are exactly those of the form
Vi(]), for | a homogeneous ideal of R,. This topology is called the Zariski topology on Proj(R). Note by
definition we have V;,(R4) = @.
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Principals opens of Proj(R)

Recall, in the affine case a principal open of Spec(R) is defined as D(f) := {P € Spec(R) | f ¢ P} for
some f € R (see definition 2.2.2). We define the principal D (f) of Proj(R) by

Di(f) ={P € Proj(R) | f & P}
with f is homogeneous of positive degree i.e f € Ry, and d > 0.
Proposition 2.5.23 Let f,g € R be homogeneous of positive degree. Then

1) D+(f)ND+(g) = D+(fg)-

2) The sets D (f) form a basis for the Zariski topology on Proj(R) when f runs through the homo-
geneous element of R of positive degree.

Proof. See [9, Proposition 10.6, p.144].

Notation. If P is a homogeneous prime ideal of a graded ring R, then R py will denote the elements of
degree zero in the localisation of R at the set of homogeneous elements which do not belong to P.

Definition 2.5.16 Let R be graded ring, and X = Proj(R). We define a sheaf of ring Ox by considering
for any open subset U C X, all functions

s: U — HR(P)
PeX

such that s(P) € R p), which are locally represented by quotients. That is given any P € U there is
a, f € R homogeneous elements of the same degree and an open V. C U such that V. C D, (f), and

s(Q) = %for alQe V.

Proposition 2.5.24 Let R be graded ring and set X = Proj(R).
1) For every P € X, the stalk Ox p is isomorphic to R p).

2) For any homogeneous element f € R, we have

(D+(f)IOX|D+(f)) ~ Spec(R(f))-

where R gy consists of all element of degree zero in the localization Ry. In particular, Proj(R) is a
scheme.

Proof. See [12, Proposition 2.5, p.76].

Definition 2.5.17 Let R be a ring. The Projective n-space over R denote P, is the proj of the polynomial
ring R[To, ..., Tu]. When R = Z we write simply P" for Proj(Z|To, . .., Tul).

Remarks 2.5.3 1) Note that P}, is a scheme over S = Spec(R).

2) We define the n-space IP5 over an arbitrary scheme S as P§ = P" Xg,00(7) S.
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Some basic properties of Proj(R)
Theorem 2.5.5 Let R be a graded ring.
i) Proj(R) is separated.
ii) If R is Noetherian, then Proj(R) is Noetherian. In particular Proj(R) is compact.

iii) If R is of finitely generated over R, then Proj(R) is a finite type over Spec(Ry) is the 0-component
of R.

iv) If R is an integral domain, then Proj(R) is integral.
Proof. See [9, Proposition 10.16, p.150].

Definition 2.5.18 (Projective morphisms) Let f : X — Y be a morphism of schemes. We say that f is
projective if there exists an open covering Y = \J; Y; such that f gy« f ~YY;) — Y; can be factored
as

Y y =P Xgpeez) Yi —— Vi
with j a closed immersion.
Example 2.5.6 X = P}, — Spec(R) is a projective morphism.
Proposition 2.5.25 The projective space IP7, is separated and of finite type.
Proof. See [30, Section 27.13, Projective space].
Theorem 2.5.6 Let S be a scheme. Then any projective morphism to S is proper.
Proof. See [17, Theorem 3.30, p.108].

Corollary 2.5.5 We have the following properties :
i) Closed immersions are projective morphisms.
ii) The composition of two projective morphisms is a projective morphism.
iii) Projective morphisms are stable under base change.

iv) Let f : X — Sand g : Y — S be projective morphisms, then X xgY — S is a projective
morphism.

Definition 2.5.19 (projective schemes) Let X be a scheme over S. We say that X is projective over S if
the structure morphism f : X — S is projective.
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2.6 Tangent spaces

Let X be a scheme and x € X, my be the maximal ideal of Ox y, and k(x) = Ox /my be the residue
field . It is clear that m, /m? is a vector space over k(x).

Definition 2.6.1 Let X be a scheme, and let x € X. Zariski tangent space of X at x is the dual
T, X = (mx/mi) v,

Remarks 2.6.1 1) For any point x € X, if the local ring Ox s is Noetherian, Nakayama's lemma
shows that dimy(,)(my/ m2) is the minimal number of generators of my (see remark 1.5.2). In
particular, if X is locally Noetherian, dimy (T« X) is finite.

2) For any open neighborhood U of x, we have TxX = Ty U.

3) Let f : X —» Y be a morphism of schemes, x € X and y = f(x). Then f% : Oyy — Oxx
canonically induces a k(x)-homomorphism of vector spaces

Tif : TeX — TyY @y k(x)
called the tangent map of f at x.

Proposition 2.6.1 Let X be a scheme. Then :
1) If X is locally Noetherian, then for any x € X, we have dimy,)(TxX) > dim(Ox ).

2) Let f: X — Yand g : Y — Z be morphisms of schemes. Then Ty(go f) = (Tf(y) ® idk(x)) o
Ty f

Proof. See [17, Proposition 2.2, p.126]

Definition 2.6.2 Let X be a locally Noetherian scheme and x € X be a point. We say that x is a regular
point of X if dim(Ox x) = dimy () (T X). If x is not regular, we say that it is a singular point.

Proposition 2.6.2 Let X be a locally Noetherian scheme. Then X is reqular if and only if for any x € X,

Proof. X is reqular if and only if for all x € X, Ox . is reqular if and only if for all x € X,
dimk(x)(TxX) = dzm((’)x,x)

2.7 Modules over schemes

So far we discussed general properties of sheaves, in particular, of rings (see section 2.2.2). Similarly as
in the module theory in abstract algebra, the notion of sheaves of modules allows us to increase our un-
derstanding of a given ringed space, and to provide further techniques. There are particularly important
notions, namely, quasi-coherent and coherent sheaves. They are analogous notions of the usual modules
(respectively, finitely generated modules) over a given ring. They also generalize the notion of vector
bundles.
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2.7.1 Sheaves of modules

Definition 2.7.1 Let (X, Ox) be a ringed space. A sheaf of Ox-modules, or simply an Ox-modules, is
a sheaf F on X such that

i) The group F(U) is an Ox(U)-module for each open set U C X.

it) For any V. C U opens subsets of X he restriction map resyy : F(U) — F (V) is compatible
with the module structure via the rings homomorphism Ox(U) — Ox (V). In other words the
natural diagram below is required to commute

F(U) x Ox(U) > F(U)
F(V) x Ox(V) > F(V)

where vertical arrows represent restrictions maps and horizontal ones multiplication maps.

Definition 2.7.2 A morphism  : F — G of Ox-modules is a morphism of sheaves such that the map
pU) : F(U) — G(U) is an Ox(U)-module homomorphism for every open U C X.

Remarks 2.7.1 i) We obtain a category of Ox-modules, which we denote by Modx.

ii) Let F be an Ox-module and x € X, then the stalk F, carries a natural Ox -module structure.
The k(x)-vector space F (x) := Fx ®oy, k(x) is called the fiber of F over x.

Example 2.7.1 Let (X, Ox) be a ringed space, F, G be Ox-modules, and let ¢ : F — G be a
morphism. Then :

1) "ker(y)”, "Im(yp)” are again Ox-modules.

2) If F C G is an Ox-submodule, then the quotient sheaf G/ F (see definition 2.1.13) is an Ox-
module.

Definition 2.7.3 Let F,G be two Ox-modules
i) We denoted the group morphisms from F to G by Homx(F,G) (or Homo, (F,G)).

ii) For U C X. The presheaf
ur— HOM@X ('F|Ur Q|u)

is a sheaf and we will call it the sheaf Hom.

iii) We may define the direct sum as

FoGg:=Fxg.

More generally, Given a any set I and for each i € I a Ox-module F;. We can form the direct sum
Bic1Fi

which is the sheafification of the presheaf that associates to each open U the direct sum of the
modules F;(U).
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Tensor product

Let F, G be sheaves of abelien groups on X. For any U C X open subset. We consider the correspondence
Ur— F(U) @0y 9(U).

This defines a presheaf on X.

Definition 2.7.4 The sheaf associated to the presheaf U —— F(U) ®@¢, 1y G(U) is called the tensor
product. We denote it by F ®o, G. When there is no confusion, we write simply F & §.

Properties 2.7.1 Let F, G be two Ox-modules.
i) Stalk (F @ G)x at the point x is naturally isomorphic to tensor product Fy ® 0y, Gx-

ii) Tensor product is right exact in the category of Ox-modules i.e if F is an Ox-module and if

F1— Fp— F3—0

is an exact sequence of Ox-modules, then the induced sequence
F1®@oy F — F2 Qo F — F3 Qo F — 0.
is exact.

iii) (Adjunction between Hom and &) For any Ox-modules F, G there is natural isomorphism
Homo, (F,Homo, (G, H)) ~ Homo, (F ® G, H).

(See [9, 10.10, p.187]).

Pushforward and Pullback

Let f : X — Y be a continuous map between topological spaces. In section 2.1.2, we introduced two
functors between the categories Shx and Shy.

* The first functor :
f* : th — Shy
F — fiF

defined by f.F(U) = F(f~1(U)) for any U open of Y. This functor is called the pushforward
(see definition 2.1.14).

* The second functor :
f71: Shy — Shy
G — f7g

and f1G(U) = (fpG)"(U) for any open U of X (see definition 2.1.17)

In this paragraph, we parallel these two constructions when f is a morphism of schemes to obtain
functors f, and f* between Modx and Mody.
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Pushforward

Let f : (X,0x) — (Y, Oy) be a morphism of schemes. Let F be an Ox-module, then for each open
U C Y, f.F(U) is a module over f,Ox. f*: Oy — f.Ox equips f.F with a natural structure of
Oy-module.

Definition 2.7.5 The above Oy-module f.F is called the direct image (or the pushforward) of F under
f.

Remarks 2.7.2 i) This construction is clearly functorial in the sheaf F, and gives a functor f, :
Mody — MOdy.

ii) The pushforward is functorial in the morphism f in the sens that (f 0 §)« = fx © gx.
Proposition 2.7.1 Let f : (X, Ox) — (Y, Oy) be a morphism of schemes. The functor
fe : Modop, — Modo,
is left exact.

Proof. See [30, Section 18.14, Lemma 18.14.3].

Pullback

Let f : (X,Ox) — (Y, Oy) be a morphism of schemes.
Recall that if G is a sheaf on Y, the inverse image f~1G is by the sheaf canonically associated to the
presheaf

froU) = lim G(V)

faucv

(see definition 2.1.16, definition 2.1.17). When G is an Oy-module, this sheaf is naturally an Ox an
f~1Oy-module and we can make f~1G into an Ox-module using the map f 1Oy — Okx.
We define :

fG=f1G @0, Ox.
Definition 2.7.6 The Ox-module f*G is called the pullback of G under f.
Remarks 2.7.3 i) In particular, f*Oy = f~1Oy ®s10, Ox = Ox.
iii) As in the case of the pushforward, we also get here a functor f* : Modo, — Modp,.
Proposition 2.7.2 Let X be a scheme, for any x € X we have
(f*G)x = Gfx) @0y, f(x) Ox,x

Proof. The stalks commutes with sheafification and tensor product (see properties 2.7.11)),and (f 1G), =
Gf(x) (see lemma 2.1.4). So

(f*G)x = (f_lg ®f’10y OX)x
= (f'9)x D10, Oxx
- gf(x) ®OY,f(x) Ox x-

Proposition 2.7.3 Let f : (X, Ox) — (Y, Oy) be a morphism of schemes. The functor
f>|< : MOd(f)Y — MOd()X
is right exact.

Proof. See [30, Section 18.14, Lemima 18.14.3].
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Global generation

Let (X, Ox) be a ringed space, F be an Ox-module, U be an open of X. It is clear that F is an
Ox x-module (see remarks 2.7.1).

Definition 2.7.7 i) F is globally generated at x € X if the image of F (X) — Fy generates Fy as
an Ox y-module. In other words, F(X) @, (x) Ox,x — Fx is surjective.

ii) We say that F is globally generated if F is globally generated at every point x € X.
Remark 2.7.1 If Oy is globally generated, then any direct sum @;c; Ox is also globally generated.

Proposition 2.7.4 Let F be an Ox-module. Then F is generally generated if and only if there is some
set I such that there is an epimorphism @;c; Ox — F.

Proof. See [17, Lemma 1.3, p.158].

2.7.2 Quasi-coherent modules

In this section, we introduce the notion of quasi-coherent Ox-module. This notion is very useful in
algebraic geometry, since quasi-coherent modules on a scheme have a good description on any affine
open.

Quasi-coherent sheaves

Definition 2.7.8 Let (X, Ox) be a ringed space and let F be a sheaf of Ox-modules. We say that F
is a quasi-coherent sheaf of Ox-modules if for every point x € X there exists an open neighbourhood
x € U C X such that Fy is isomorphic to the cokernel of a map

P ou — P ou.

j€] i€l

Note that the direct sum of two quasi-coherent Ox-modules is quasi-coherent Ox-modules.

It is not true in general that an infinite direct sum of quasi-coherent Ox-modules is quasi-coherent (see
[30, chap. 17.10.9, Example 10.9]).

Notation. We will denote The category of quasi-coherent Ox-modules by QCoho, .
Example 2.7.2 The structure sheaf Ox is quasi-coherent.

Proposition 2.7.5 Let f : (X, Ox) — (Y, Oy) be a morphism of ringed spaces. The pullback f*G of
a quasi-coherent Oy-module is quasi-coherent.

Proof. See [9, Proposition 14.14, p.207].

2.7.3 Sheaves associated to modules

Since thinking about affine schemes is supposed to be equivalent to thinking about rings (the two cate-
gories are equivalent, see theorem 2.3.2), we would like our thinking about sheaves of modules on affine
schemes to be equivalent to thinking about modules over rings. In this section, we will define the sheaf to
modules.

Definition 2.7.9 Let R be a ring and let M be an R-module. We define the sheaf associated to M on
X = Spec(R), denoted by M, as follows. For any open subset U of X we define
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M(U) := {s: U — [Ipex Mp | forall P € U, we have s(P) € Mp, and for all P € U there is a €
M,r € R, and an open neighbourhood V C U such that V. C D(r) and s(Q) = 2 forall Q € V'}.

Remark 2.7.2 The sheaf M carries an obvious Ox-module structure (see [12, Proposition 5.2, p.110]).
The ~ is functorial in M. For any R-module homomorphism f : M — N there is an obvious way
of obtaining an Ox-module homomorphism f : M — N. Indeed, The maps f, : M, — N; are
Ox(D(r))-modules homomorphisms compatible with localization maps i.e., the following diagram

Mr#)Nr

|,

MdLNd

—_—~—

is commutative, and thus induce a map between M and N. Moreover, one has fog = f o §. So We
have thus defined a functor from the category of R-modules to the category of Ox-modules.

Proposition 2.7.6 Let R be a ring and M be an R-modules. The sheaf M on Spec(R) has the following
three properties :

1) Forall r € R, we have a canonical isomorphism
M(D(r)) =~ M,.

2) Ifd € Rand d € (r), then there is a commutative diagram

M, > My

where the vertical isomorphisms one from 1).

3) There is natural isomorphism Mp ~ Mp for all P € Spec(R). This a natural isomorphism fits in
a commutative diagram

~

Mp — > Mp

M(Spec(R)) = y M

Here the vertical morphisms are the natural ones and the lower horizontal ones come from 1).

Proof. The proof of this Proposition is similar to the proof of proposition 2.3.1. For more details, see [17,
Proposition 5.10].

Theorem 2.7.1 The functor M — M from the category of R-modules to the category of Ox-modules
where X = Spec(R) is exact and fully faithful.

Proof. See [9, Theorem 14.4, p.195].



103

Tensor products, Pushforward and Pullback
Proposition 2.7.7 Let R be a ring and let X = Spec(R). Also let p : R — A be a ring homomor-
phism, and f : Spec(A) — Spec(R) be the corresponding morphism of spectra. Then :

1) If M and N are two R-modules. Then M/@?R/N ~M ®oy N.

2) The A-module M can be considered as an R—module via the map  : R — A, and we denote
this A-module by Mr. We have

f*M = MR.
3) Let M be an R-module. Then o

4) If {M;} is any family of R-modules, then 6/91\/]\/11 = @, M;.
Proof. See [12, Proposition 5.2, p.110].
Theorem 2.7.2 M is quasi-coherent sheaf.

Proof. See [9, Proposition 13.8, p.192].

2.74 Coherent sheaves
Definition 2.7.10 Let X be a ringed space, and let F be a sheaf of Ox-module.

i) We say that F is finitely generated if for every x € X, there exist an open neighborhood U of x, an
integer n > 1 and a surjective homomorphism on O%\u — Fu

ii) We say that F is coherent if it is finitely generated, and if for every every open subset U of X, and
for every homomorphism B : (’)?(‘u — Flu ,Let (X, Ox) the kernel Ker () is finitely generated.

Theorem 2.7.3 Let X be a scheme. Let F be a quasi-coherent O x-module. Let us consider the following
properties:

i) F is coherent.
ii) F is finitely generated.
iii) For every affine open subset U of X, F (U) is finitely generated over Ox(U).

Then i) = ii) = iii). Moreover, if X is locally Noetherian then these properties are equivalent.

Proof. See [17, Proposition 1.11, p.161].

Coherence of pushforwards

Proposition 2.7.8 Let f : X — Y be a finite morphism of schemes.
1) If F be a quasi-coherent sheaf on X, then f.F is quasi-coherent on'Y.
2) If X and Y are Noetherian, f.JF is even coherent if F is.

Proof. See [9, Theorem 14.15, p.208].

Notation. The category of coherent Ox-modules is denoted Coh(Ox).
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2.8 Some cohomology interpretations

In this section, we consider the theory of cohomology in algebraic geometry. It is an extremely rich and
varied theory. In this section we are interested in one of the most elementary cohomology theories, the
Cech cohomology of quasi-coherent sheaves.

2.8.1 Some homological algebra

Complexes of abelian groups

* Recall that a complex of abelian groups A® is a sequence of groups A’ together with maps between

them
, A1 i a0 G gt -

such that d+1 o d' = 0 for each i.

*x A morphism of complexes A* f—> B* s a collection f : A" — B! of maps making

the following diagram commutative :

i

) i . +1 .
. Ai-1 d s Al d s Al O

2T 2
l » B

i
. Bzfl 1 U N B1+1 s ...

* We say that an element o € A' is a cocycle if it lies in the kernel of the map d', i.e d'(c) = 0.

* A coboundary is an element in the image of 1, i.e 0 = d'~1(7). For some T € A™"1. These form
subgroups of A", denoted by Z'(A*), and B'(A"), respectively. Since d'(d'~1)(x) = 0 for all x,
all coboundaries are cocycles, so that B'(A®) C Z'(A®).

* The cohomology groups of the complex A®, are set up to measure the difference between these two
notions. We define the i-The cohomology group as the quotient group

H'(A®) := Z!(A®)/B'(A®).

4 » B* £ C* » 0 isthe given

f 8

* An exact sequence of complexes noted : 0 > A®

for all i of an exact sequence of abelian groups 0 » Al » B > Cl > 0 .

« Given the previous definition, we deduce morphisms f* : H'(A®) — H'(B®)

Theorem 2.8.1 We consider the exact sequence of complexes 0 —— A*® ! , B* -5 C* >0 .
Then there is a long exact sequence of cohomology groups
—— H(A*) —— H'(B*) —— H'(C®) H"(A®*) — H'*Y(B*) — H'"(C*) —

Proof. See [26, Proposition D.1.10, p.503].
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Complexes of sheaves

Remark 2.8.1 The definitions and arguments of the previous subsection apply much more generally (to
any abelian category). In particular, we make the following sheaf analogue.

Definition 2.8.1 A complex of sheaves F*, is a sequence of sheaves with maps between then

di-2 Jgi-1 di i+l
- —— Fia > Fi » Fipr —— -

such that d+1 o d' = 0 for each i.
Definition 2.8.2 Given a complex, we define the cohomology sheaves HP (F*), as Ker(dP) /Im(dP~1).

As in theorem 2.8.1, a short exact sequence of complexes of sheaves gives rise to a long exact sequence of
cohomology sheaves.

2.8.2 The Cech cohomology

Notation. Let X be a topological space, and let F be a sheaf of abelien group on X. Let U := {U,}icr
be an open cover of X. We denote by U;; = U; N U; and more generally U; =U;,N---N lll-p.

0°ip
Definition 2.8.3 i) Forall p > 1, we denoted by

CP(Z/{,]-") = H ]-"(Uio...ip): H ]-"(Uioﬂ-~~ﬂuip).

ip<-<ip ip<-<ip
We have thus constructed a complex of abelian groups C*(U, F).

it) The elements of CF(U, F) are called cochains. CF(U, F) is called also group of p-cochains with
values in F.

iii) We also define the differential :

o CP(U,F) — CPHYU,T)

S — 0s
by
p+1 v
Pa). . _—2 — , P
(5 S)ZO"'1p+1 k:0( 1) SZO,,,lk...1p|ui0mfkmip.

Note that for p > 0, we have 5P*1 0 67 = 0.
Notation.  x ZP(U,F) = {c € CP(U,F)|6*(s) = 0}

§(CP_1(U,]-")) if p>0
0 otherwise

x BP(U,F) = {
Definition 2.8.4 The p-th Cech cohomology of F with respect to U is defined as
HP (U, F) = ZP(U, F)/B* (U, F) = ker(67) / Im(6P~1)

Remark 2.8.2 Note that a sheaf homomorphism v : F — G induces a mapping of Cech cohomology
groups, so we obtain functors F — HP (U, F') from abelian sheaves to abelian groups.
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Proposition 2.8.1 For any open cover U of X we have :
H(U, F) =T(X, F).

Proof. See [9, Theorem 17.13, p.258].

Examples 2.8.1 1) Let X = S! be the unit circle and equip it with a standard covering U =
{Uy, Uy}, consisting of two intervals (intersecting in two intervals S and N) and let F = Zx be
the constant sheaf. Here we have

« COWU,F)=Zx(U)) x Zx(Up) ~Z x Z
* Cl(u,./—") = ZX(Lh N UQ) ~7Z xX4Z.
x The map 8° : CO(U, F) — CY (U, F) is the map ¢ : Z> — Z? given by 5°(x,y) =

(y =%y —x).
Hence HO(U, F) = ker(°) = Z(1,1) ~ Zand H (U, F) = Coker(6°) = (Z x
2)/7(1,1) ~ Z.

2) Let X be an irreducible topological space. Then for any finite covering U of X we have for a constant
sheaf Ax
HP(U,Ax) =0

for p > 0. (See [9, Proposition 13.11, p.251]).

The inductive system of HP (U, F)

We will describe in this paragraph the inductive system which will allow us to define the HP (U, F).

Definition 2.8.5 (Refinement function) If U C Q, with U = (V})jcy and Q = (U;);c; then there

exists a function T called refinement function T : | — I such that V; C Uy ;) used to define maps :

™. CP(O,F) — CP(U,F)

(S]'O...]'p) — (ST(jo)~~-T(jp)) \7

Theorem 2.8.2 Let 7, T : | — I be two refinement functions such that V; C Uy N Uz (j). Then T

and T induces the same function ¢35} : H? (Q), F) — HP(U, F).

0-ip

Proof. See [30, Section 20.15 Refinements and Cech cohomology].

Long exact sequence in cohomology

Theorem 2.8.3 Let F,G and H be sheaves on X and F —2—~ G and G L H  be two mor-
phisms of sheaves.

If for any covering Q) of X there exists a covering Q0 C Q) such that for any finite intersection W of open
sets of Q) the following sequence

0 —— FW) —“= gW) L Hw) — =0

is exact. Then the following infinite sequence

0 —— HYX, F) —%= HYX,G) ——s HO(X,H) —2 HY(X, F) — > --.

p

. — 5 HP(X,F) - HP(X,G) —— HP(X,H) -2 HPY(X, F) — ---

is exact.
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Proof. See [9, Proposition 17.2, p.251].

Theorem 2.8.4 Let X be a topological space and let F be a sheaf on X.
i) The Cech cohomology groups are functors H'(X,.) : AbShx — AbG.

ii) (Leray's theorem) If F is a sheaf and U is a covering such that H'(U; N - - - U, F) = 0 for all
i > 0and multi-indices iy < - - < iy, then

H'(X,F)=HU,F).
Proof. See [9, Theorem 13.13, p.254].

Theorem 2.8.5 (Serre) Let R be a Noetherian ring, let X = Spec(R) and let F be a quasi-coherent
sheaf on X. Then
HP (X, F) = 0.

forall p > 0.
Proof. See [9, Theorem 14.1, p.256].

Corollary 2.8.1 Let X be a Noetherian affine scheme and

0 = > G >y H » 0
be an exact sequence of Ox-modules with F is quasi-coherent. Then the following sequence
0 — F(X) — G(X) —— H(X) —— 0
is exact.

Proof. See [9, Corollary 14.5, p.202].

Theorem 2.8.6 (Grothendieck) Let X be a Noetherian topological space of dimension m, and let F be

an abelian sheaf on X. Then
HP(X,F)=0

forall p > m.

Proof. See [30, Proposition 20.20.7 Grothendieck].

2.9 Divisors defined by means of schemes

We previously described in the first chapter divisors on curves. We give here the interpretation (and
generalization) of these divisors in the language of schemes. We present then in this section Weil and
Cartier Divisors and some relations between them.
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2.9.1 Cartier Divisors

Definition 2.9.1 (Sheaf of meromorphic functions)
Let R be a commutative ring. We denote by R(R) for the set of nonzero divisors of R. Let X be a scheme,
the sheaf R is defined as follows : For any open subset U C X

Rx(U) = {f S Ox(U) |Vx el fy e R(Ox/x)}.

Let K to be the presheaf on X defined by Ky (U) := Rx(U) ' Ox(U) and Kx to be the sheafification
of ICIX. We call Kx the sheaf of meromorphic functions on X.

Remarks 2.9.1 i) Kx is called also the sheaf of total quotient rings of Ox.
ii) Note that if U is an affine open subset of X, then Rx(U) = R(Ox(U))

iii) Note that there is a natural morphism of sheaves Ox — Kx, which is a monomorphism because
of the nonzerodivisor condition.

Example 2.9.1 Let k is a field and Y = Spec(k|x]). Then Oy (U) is the ring of rational functions on
an open set U in Y. The image of any nonzero f € Oy(U) in Oy x = k[x], (x corresponds to a prime
p C k[x]) is a nonzerodivisor for any x, since the localization of an integral domain is again an integral

domain, so Ky (U) is the fraction field of Oy (U), which is clearly k(x). As such, ICy = Ky is just the
constant sheaf k(x), which is also isomorphic to Oy e = k(x| o), where € is the generic point (0).

Remark 2.9.1 In fact, for any integral scheme X, Kx is the constant sheaf associated to Ox ¢, by the
same argument in the example 2.9.1.

Definition 2.9.2 Let IC3 be the subsheaf of invertible elements of Kx and O be the subsheaf of invert-
ible elements of Ox. We denote IC5 / O« to be the sheafification of the presheaf U — Ky (U) /O« (U).
Then there is a natural morphism Ky — K5/ O%.

i) The group of Cartier divisors on X is defined to be CaDiv(X) := H(X, K5/ Ox).
ii) The natural morphism above yields a homomorphism
div: H'(X,K¥) — HY(X,K%/0%).

A Cartier divisor D is said to be a principal Cartier divisor if D € Im(div). Note that a principal
divisor can be described with the singleton collection {(X, f)} for f € K% (X).

iii) We denote the group law on CaDiv(X) as addition. For any D, D" € CaDiv(X), we say D and
D’ are linearly equivalent, D ~ D', if D — D" € Im(div).

iv) Let D € CaDiv(X), D is said to be effective if and only if D € Im(H°(X,Ox N K¥) —
HY(X,K%/0%). We then write D > 0, and the set of effective Cartier divisors is denoted by
CaDivy (X).

v) The group of Cartier divisors mod principal divisors is denoted CalCl(X) := CaDiv(X)/ ~.
Also Cacl(X) is called Cartier divisor class group.

Remarks 2.9.2 i) For asheaf of rings F on X, we can construct the sheaf F* of invertible elements,
which is a sheaf of abelian groups, by defining

FX(U) :={se F(U)|st =1y forsomet € F(U)}

Note that if st = 1y in F(U) and W C U, then sjytjw = lw.
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ii) Definition 2.9.2 allows us to represent a Cartier divisors by a system {(U;, f;) } where {U;} is an
open cover of X and f; € HO(U;, K ) such that ﬂf]."&ij(’)gé(uij), where U;; = U; N U; = Uj;. In
other words, there are units h;; € OX(UU) such that f; = h;;f; over Uj;.

Definition 2.9.3 The pairs (U;, f;) are called the local defining data or the local equations for the divisor
D (with respect to the covering Uj;).

Not that the local defining data are not unique : Suppose now we have two systems {(U;, f;)} and
{(W, f;)} which represent a same Cartier divisor D. Then on U; N W;, fi = h;;g; for some h;j €
Ox (U; "YW;). Therefore, for convenience, we denote D = [{(U;, f;) }].

Now, the set of Cartier divisors naturally form an abelian group with the group law defined by : If
D=[{(U;fi)}and D = [{(V],g])}] € CaDiv(X), then

D+D = ;N V],ﬂg])}]

The inverse —D is [{(U;, f; )}].
Additionally, let D = [{(Uj, f;)}] € CaDiv(X). Then D € CaDiv(X) if and only if f; € Ox(U;)
for all i. Moreover, D is principal if [{ (U, f;)}] = [{(X, f)}] for some convenient f.

Example 2.9.2 On P! we can take the standard covering Uy = Spec(k[s]) and U; = Spec(k[s~1]).
Then there is a Cartier divisor D given by (Uy, s) and (Uy, 1).

Correspondence Between Sheaves and Cartier Divisors

We would like to reinterpret Cartier divisors in the language of sheaves.

For any D € CaDiv(X), we would like to associate a sheaf to D. Namely, let D = [{(U, f;)}] €
Ox (D), the associated sheaf on X is defined by

Ox(D)y, = fi_10X|Ui = f oy,

i.e., the sheaves ffl(')ui glue to a sheaf Ox (D) defined on all of X. It is by construction invertible, since
it is invertible on each U,;.

This construction is independent of the choice of the representatives. Indeed, Two different representatives
(Ui, fi) and (W;, g;) for the same divisor D give rise to the same invertible sheaf. This is because over

U; N W;, we have f; = hjjg; for some sections hij € Oy (U; "W). This means that fi_l(’)uimwj =
gi_loumwjz and so the sheaf is uniquely determined as a subsheaf of Kx.

Theorem 2.9.1 The map D —— 3(D) = Ox (D) gives a one-to-one correspondence between Cartier
divisors on X and invertible subsheaves on Kx.

Proof. See [12, Proposition 6.13, p.144].

2.9.2 Weil Divisors

In this subsection, we will introduce Weil divisors. We consider the schemes satisfying the following
condition : (x) X is a Noetherian integral separated scheme which is reqular in codimension one (We say
a scheme X is reqular in codimension one (or sometimes nonsingular in codimension one) if every local
ring Ox » of X of dimension one is reqular.)

Recall that this means that each local ring Ox , is an integral domain, which is integrally closed in
its function field K = k(X). Recall that if Z is an irreducible closed subset of a scheme X, then the
codimension of Z in X is equal to the dimension of the local ring Ox ¢, where € € Z is the generic point
(see proposition 2.5.15).
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Definition 2.9.4 Let X satisfy (x)

i) A prime divisor on X is a closed integral subscheme Z of codimension one.
We denote by XV the set of closed integral subschemes of codimension 1, or equivalently, their
generic points.

ii) A Weil divisor on X is a finite formal sum

D= ZniYi (28)

where n; € Z and Y; are prime divisors. Then the set of Weil divisors Div(X) is the free abelian
group on X,

iii) We say D is effective if all the n; are non-negative in (2.8).

iv) The support of a Weil divisor D, denoted Supp (D), is the subset Uy, +oY;.

Remark 2.9.2 If Z is a prime divisor on X and V. C X is an open set, then Z NV is naturally a prime
divisor on V. It follows that we obtain a presheaf V. —— Div(V).

Our next task is to define the Weil divisor associated to a rational function.

The assumption (x) “reqular in codimension one” implies that Z C X is a prime divisor with generic
point € € X, the local ring Ox . is a discrete valuation ring, with a corresponding valuation V : K* —
Z.. The concept of a valuation is a generalization of the "order” of a zero or a pole of a meromorphic func-
tion in complex analysis.

In same logical, an element f € K* has positive valuation m if it vanishes to order m along Z, and
negative valuation —m if it has a pole of order m there.

To define this properly, let Z C X be a prime divisor, and let € € X be its generic point. Then we define
for a nonzero element f € Ox,

Vz(f) =d (2.9)

where d is the unique non-negative integer so that f € m%\ m+1
In the function field K = k(X), an element f is represented by a fraction h/g and we define Vz(f) =
Vz(h) — Vz(g). With this definition, we have Ox ¢ = V,; (Z>0), Oxe = V,1(0) and the maximal

ideal is given by m = V, 1 (Z>1).

Definition 2.9.5 Let f € K*, we define its corresponding Weil divisor as

div(f) =) Vz(f)Z.
z
Divisors of the form div(f) are called principal divisors, and they generate a subgroup DivO(X) C
Div(X).

In the definition 2.9.5 the sum is taken over all prime divisors on X. To see that this is well defined, see
the following lemma.

Lemma 2.9.1 Let X be an integral noetherian scheme which is regular in codimension one, with fraction
field K and let f € K. Then Vz(f) = 0 for all but finitely many prime divisors Z.

Proof. See [9, Lemma 15.3, p.275].
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Lemma 2.9.2 Let f,g € K*. Then
div(fg) = div(f) + div(g)

as Weil divisors on X.
Proof. See [30, Section 31.26.6, Weil divisors].

Example 2.9.3 Let X = Spec(k[x]) = A} and K = k(x). Here prime divisors in X correspond to
closed points Z = [b] € A} associated to maximal ideals (x — b). Let f = xi(cx—{ll) € K. Then Vz(f) =
0 for all b except when b = 0, +1, —1,where we have Vi (f) = 2, Vjy)(f) = Land V|_q1(f) = —1.
Hence the divisor of f is 2[0] + [1] — [—1].

The sheaf associated to a Weil divisor

As in the subsection 2.9.1, we have been successful to associate any Cartier divisors with a sheaf. The
same way we would like to form a sheaf, denoted Ox (D) where D = Y nzZ is Weil divisors, which
should consist of rational functions with poles at worst along D.

If f = g is such a rational function where h, g are coprime, we have div(f) = div(h) — div(g).

So if D is a prime divisor, we want the pole div(g) to be "cancelled out’ by D, i.e., D — div(g) is effective.
In other words, we want div(f) + D to be an effective Weil divisor. Thus, concretely, we define the sheaf
Ox(D) as follows :

Ox(D)(U) = {f € K| (div(f) + D)y = 0} U {0}
= {f €K|Vz(f) > —ng, forallny € Z} U{0}

Here Z ranges over all prime divisors in X and €z denotes thegeneric point of Z. Moreover, The sheaf
Ox(D) is a quasi-coherent sheaf on X and it is invertible if and only if D is a Cartier divisor.

Connection between Weil Divisors and Cartier Divisors

For each open subset U C X the following exact sequence :

0 — OF(U) y K* —1% Diy(U)
This gives an exact sequence of sheaves

0 — 0F — K5 - Div (2.10)

and we obtain the following injective map of sheaves
Y:K5/O5 — Div.
If we take global sections, we get an injective map
B : CaDiv(X) — Div(X).

Let D be a Cartier divisor given by the data (U;, §;). If Z is a prime divisor on X, with generic point e,
then since U; is a cover, € € U; for some i. We can then define

Vz(D) = Vz(gi)
This is independent of the choice of U;. Indeed, If e € U; N Uj, then gz-gj_l € Ox(U; N Uj), and so
Vz (gigj_l) = 0, hence Vz(gi) = Vz(g;). Then B is defined by

B(D) = ;Vz(D)Z
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Remark 2.9.3 So by explicit description above, we may view Cartier divisors as a subgroup of the group
of Weil divisors.

Theorem 2.9.2 Let X be an integral normal scheme. Then the following statement are equivalent :
i) B: CaDiv(X) — Div(X) is an isomorphism.
ii) The exact sequence
0 — 0F — K5 - Div
is exact on the right.

ii1) X is locally factorial (all the local rings Ox x are UFDs).
Proof. See [9, Proposition 15.27, p.287].
Corollary 2.9.1 Let k be an algebraically closed field. Then Pic(A}) = CI(A}) = CaCI(A}) = 0.

Proof. See [9, Theorem 20.43. p.311].
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Chapter 3

Introduction to Central Simple Algebra,
Severi-Brauer Varieties

The aim of this chapter is to present some basic properties of central simple algebras and to introduce
Severi-Brauer varieties with a special focus on relationships between these varieties and splitting field
of central simple algebras. We give at first a brief introduction to simple and semisimple modules, then
we prove fundamental theorems on central simple algebras. In particular, this includes Wedderburn's
theorem, the double centralizer theorem and Skolem-Noether theorem. We show how to construct Brauer
group of a field and show how crossed products relate this group to a second Galois cohomology group. We
define then Severi-Brauer varieties and present some of their properties. In particular, we are interested
here in canonical connections between these varieties, central simple algebras and some cohomological
interpretations.

3.1 Simple and semisimple modules

Let R be a commutative ring. An associative algebra over R, is a pair (A, ) consisting of an associative
ring A and a ring homomorphism
Yp:R— Z(A)

called the structure map of A over R, where
Z(A)={a€ A|lxa=axforallx € A}

is called the center of A, which is a subring of A.
An algebra homomorphism ¢ : A — B between two R-algebras is a ring homomorphism such that the

diagram
A ¢ > B
DN
R

commutes. This defines the category Algr of R-algebras.

3.1.1 Simple Modules
Recall that a ring R is simple if it has no two-sided ideals but 0 and R.

Definition 3.1.1 Let A be an algebra, M be a left (resp., right) A-module. We say that M is simple (or
irreducible) if M # 0 and it has no proper nonzero submodules.

Convention. In what follows, the word module will mean a left module.

Examples 3.1.1 1) Any field k is simple as k-module.
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2) Take A = Z and M = Z/5Z. Then M is a simple A-module.

3) Let | be maximal left ideal of A. Then A/] is a simple A-module. Indeed, let P be a submodule
of A/], and set D := {a € A|a+ ] € P}, then P is a left ideal of A containing | and we have
P/] = P. Since | is a maximal ideal of A, then P = Jor P = A. SoP = 0or P = A/].
Conversely, let I be a left ideal of A such that A/] is a simple A-module, then | is a maximal left
ideal. Indeed, Let L be a left ideal of A such that I C L, then L/I is a submodule of A/I. Since
A/l is a simple, then we have L/I = {0} or L/I = A/I. Hence L = [ or L = A.

In what follows, A will denote an algebra (over some commutative ring).

Proposition 3.1.1 Let M be a nonzero A-module, then the followings statements are equivalent :
1) M is simple.
2) Forallm € M\ {0}, Am = M.
3) M = A/] for some maximal left ideal | of A.

Proof. 1)=2) Since Am is a nonzero submodule of M and M is simple, so Am = M.

2)= 1) Let P be a nonzero submodule of M and let m be a nonzero element of P, then we have M =
Am C P, which shows that P = M. This proves that M is a simple A-module.

3) = 1) This is a direct consequence of examples 3.1.1 3).

Lemma 3.1.1 (Schur’s lemma) Let M and N be simple A-modules. If ¢ : M — N is a homomorphism
of modules, then either ¢ = 0 or ¢ is an ismorphism.

Proof. Suppose that ¢ # 0, then ker(¢) # M. It follows that ker(¢) = 0. Also, im(¢) # 0, so
im(¢) = N. Thus, ¢ is an isomorphism.

Corollary 3.1.1 Let M, N be simple modules. Then M ~ N (as A-modules) or Hom 4 (M, N) = 0.

Proof. Let ¢ € Homy(M,N). If ¢ # 0, then by lemma 3.1.1 ¢ is an isomorphism. Hence M and N
are isomorphic.

Definition 3.1.2 A division algebra is an algebra in which every nonzero element has a multiplicative
inverse, but multiplication is not necessarily commutative. A ring (which is obviously a Z-algebra) that
is a division (Z-)algebra is also called a division ring or a skew field.

Corollary 3.1.2 Let M be a simple A-module and D := End s(M), i.e., the algebra of endomorphisms
of M (endowed with its canonical laws). Then D is a division algebra.

Proof. Let d € D\ {0}, then by lemma 3.1.1 d is an ismorphism. So d is invertible in D.

3.1.2 Semisimple modules

Definition 3.1.3 A left (resp. right ) A-module M is semisimple if there exist simple A-modules M;
(i € I) such that

M ~ ®i61 Mi
(isomorphism of A-modules).

Example 3.1.1 A simple module is semisimple.
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Definition 3.1.4 Let M be an A-module. We say that M is indecomposable if writing M = P @ Q for
some submodules P, Q of M, then necessarily P = 0 or Q = 0.

Proposition 3.1.2 Let M be a semisimple A-module. Then followings statements are equivalent :
1) M is a simple A-module.
2) End4(M) is a division algebra.
3) M is indecomposable.

Proof. 1) =2) This follows from corollary 3.1.2.
2=-3) Let P and Q be two submodules of M. If we suppose that M = P & Q with P # 0and Q # 0.
Consider the followings homomorphism of A-modules :

a:= (idpy,0): M=PHQ — M
p+4q A

By the hypothesis here o must be an isomorphism, which is not the case. Therefore M is indecomposable.
3)=1) Immediate.

Proposition 3.1.3 Let M be a nonzero A-module and let Q be proper submodule of M. Assume that
M = Y o1 M;, where each M; are a simple submodules. Then there exists | C I such that M =

(Bjey M;) B Q

Proof. Since Q # M, then there exists i € I such that M; Q. In this case, we have M; N Q = {0},
because if x # 0(€ M; N Q) we obtain M; = Ax C Q (see proposition 3.1.1). So M; + Q = M; @ Q.
Consider ] be a maximal for the property Py := Y ic; Mj+ Q = Yie; M; @ Q. Now, leti € I\ ] if we
may assume that Py + M; = P M; = Ykejutiy M @ Q. But that contradicts the maximality of |.
Thus M;N Py # 0. Let z € M; N Py, we have M; = Az C Py. So foralli € I M; C Py, then M C Py,
so M = P,. Hence M = Zje] M; P Q.

Remark 3.1.1 In proposition 3.1.3, if we take Q = 0 we obtain M = c; M;. Then M is semisimple.

Definition 3.1.5 Let M be an A-module ( 0). Let P and Q be submodules of M.
i) Qis called a complement of Pif P@ Q = M.

ii) If any submodule of M has a complement in M. We say that M supplemented.

Lemma 3.1.2 Let M be an A-module. Then the followings are equivalent :
i) M is a supplemented.

ii) Any submodule of M is supplemented.

Proof. i) = ii) Let N be a submodule of M, and let P be a submodule of P. Then P is also be a submodule
of M, since M is supplemented, then there exists Q be a submodule of M such that M = P @ Q, so we
have N=NNM= (PAQ)NN =PBH(QNN). Hence P has a complement in N.

ii) = i) Immediate.

Proposition 3.1.4 Let M be a nonzero A-module. Then the followings are equivalent :
1) M is semisimple.

2) M is the sum of its simple submodules.
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3) M is supplemented.

Proof. 1)=-2) Immediate.

2)=>3) proposition 3.1.3.

2)=1 remark 3.1.1.

3)=1) Let S be a maximal (proper) submodule of M. Since M is supplemented, then there exists a
submodule Q # 0 such that S @ Q = M. Also, since S is maximal in M then necessarily Q is a simple
submodule of M. This prove that M has a simple submodule. Let N be sum of all simple submodules of M

and let N' be a submodule of M such that M = N @ N'. Assume that N' # 0, then N is supplemented

(see lemma 3.1.2). So for the same reason as in above, N has a simple submodule P. Plainly, P is also
a simple submodule of M, but this contradicts the fact that N is the sum of all simple submodules of M.
This shows that M is the sum of its simple submodules.

Corollary 3.1.3 Let M be a semisimple A-module and let P be a nonzero submodule of M, then
i) P is semisimple.
ii) M/ P is semisimple.

Proof. i) Since M is supplemented, then by lemma 3.1.2 P is also supplemented. So by proposition
3.1.4 P is semisimple.

ii) Since M is supplemented, then there exists a submodule Q of M such that P@Q = M. So
M/P >~ Q. Hence by i) M/ P is semisimple.

Corollary 3.1.4 The direct sum of a family of the semisimple A-modules is a semisimple A-module.
Proof. This corollary is a direct consequence of the definition 3.1.3.

Proposition 3.1.5 Let M = @;c; M; where M; are simple A-modules. Suppose that N is a simple
A-module and suppose that there exists a nonzero homomorphism of A-modules  : N — M. Then
there exists jo € I such that M = $(N) @ (Dj, M;), and N = Mj, (isomorphism of A-modules).

Proof. By proposition 3.1.3, there exists a subset | of I such that M = {(N) @(Dje; M;). Since N is
simple, then so is (N ); moreover we have the following canonical isomorphisms of A-modules :

Y(N) =M/ EPM;~ P M,

J€J jenN]
so necessarily |1\ J| = 1. So there exists jo € I such that ] = I\ {jo}. The rest of the proof is obvious.
Notation. Let M be an A-module. We denoted by S(M) the set for all submodules of M.
Definition 3.1.6 Let M be an A-module. The radical of M is rad(M) := N{N € S(M) | M/ N is simple}.
Remark 3.1.2 rad(M) is a submodule of M.

Proposition 3.1.6 Let M be an A-module and N be a submodule of M. Then the following statements
hold :

1) Ifrad(M/N) = 0, then rad(M) C N.
2) rad(M/rad(M)) = 0.

Proof. See[21].
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Lemma 3.1.3 Let M be a semisimple an A-module. The followings are equivalent :
i) M is finitely generated.
ii) M is Noetherian.
iii) M is Artinian.
Proof. See [21, Proposition, p.36].

Theorem 3.1.1 Let M be an A-module. The following statements hold : (what you wrote here and the
implications you have in the proof have no sense) are equivalent :

i) M is semisimple and finitely generated.

ii) rad(M) = 0 and M is Artinian.

Proof. i) = ii) Suppose that M is semisimple and finitely generated, so by lemma 3.1.3 M is Artinian.
Write M = @ e M with M; simple. For i € I, put P; = @;..; Mj, then

M/ P; ~ M;(is simple)

Sorad(M) C ;e Py = 0.

ii) = i) Assume that rad(M) = 0 and M is Artinian and consider the family of all finite intersections
M;, N---N M, where M; is a submodule of M such that M/ M; is simple. Since M is Artinian, then
this family has a minimal element that we may take to be by My N - - - N M, for some positive integer r.
Necessarily, My N - - - N M, = 0. Indeed, for any submodule N of M such that M/ N is simple, we have

(Min---NM,)NN=M;N---NM,

because My N - - - N M, is minimal. So My N --- N M, C N, which yields that rad(M) = My N ---N
M,. Now, consider the canonical map :

p: M — @ M/M,
m o (m+ M;)i<i<,

Since M/ M; are simple, then @;_,; M/ M,; is semisimple. Hence (M) is semisimple ( because (M)
is submodule of @j_; M/M;). We have ker() = MjN---N M, M =~ p(M). Therefore, M is
semisimple. Moreover, by lemma 3.1.3, M is also Noetherian, so M is a finitely generated.

3.2 Semisimple and simple algebras

Throughout this section, F is a field. Recall that all algebras are associative and have an identity, denoted
1 (sometimes denoted 1,4). Most results will be written in terms of left modules (which we hence often
will simply call modules). If we need to work with right modules then this will be specifically stated. The
endomorphism ring of an A-module M is denoted End o(M). Similarly, we will use Hom (M, N) to
denote the set of module homomorphism from M to N.
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3.2.1 Semisimple algebras

Definition 3.2.1 Let A be an algebra. We say that A is semisimple if A is semisimple when it is
considered (in the natural way) as a left A-module.

Remark 3.2.1 Note that if A is semisimple i.e., A = @;c1 A;, where each A; is a simple left A-module
(or equivalently, where each A; is a left ideal of A).

Definition 3.2.2 Let A be an algebra, we say that A is left Artinian (resp. Noetherian ) if A is an
Artinian left A-module (resp., a Noetherian left A-module).

Proposition 3.2.1 An algebra A is semisimple if and only if it is left Artinian and rad(A) = 0.
Proof. This follows from theorem 3.1.1 and remark 3.2.1.

Proposition 3.2.2 Let A be a semisimple algebra. Then every A-module is semisimple and every image
of A by a homomorphism of algebras is a semisimple algebra. Moreover, every simple A-module is
isomorphic to a minimal left ideal of A.

Proof. Since A is a semisimple A-module, then the direct sum of B copies of A is also a semisimple
A-module, for all the cardinal B. Therefore, every free left A-module is semisimple. Clearly, for any left
A-module M, there exists a free A-module N and submodule P of N such that

M~ N/P

As seen above, N is semisimple, so by corollary 3.1.3 N/ P is also a semisimple A-module. Write the
argument here which show that simple A-modules are isomorphic to minimal left ideal of A, after showing
that the image of a semisimple algebra by a homomorphism of algebras is a semisimple algebra (see below),
then by proposition 3.1.1, there exists a maximal left ideal | of A such that M ~ A/] (as A-module).
Since A is semisimple (as A-module), then A is supplemented (see proposition 3.1.4). Therefore, there
exists a left ideal I of A such that I @ ] = A, so we have

A/] ~ I (as A-module)
Also since | is a maximal left ideal of A, then necessarily, I is a minimal left ideal of A, so
M~A/]~1

and 1 is a minimal left ideal of A.
Assume that A is R-algebra where R is a commutative ring. Let B be a R-algebra and assume that there
exists a homomorphism of R-algebras

Y:A—B
Let’s show that C := (A) is a semisimple algebra. Without losing the generality we can assume that ¢
is surjective i.e B = C. Note that \ induces an action of A on B given by

a-x:=1(a)xforalla € Aand x € B

Therefore B is a (left) A-module (left). and so by the above, B is a semisimple A-module. We can
write B = @;c; B; with B; simple A-submodule of B. Since 1 is surjective, then each also a simple
B-submodule of B, so B is a semisimple algebra.
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3.2.2 Simple algebras

Definition 3.2.3 Let A be an algebra. We say that A is simple algebra if A # 0, i.e., A # 0*and the
only two-sided ideals of A are {0} and A.

Examples 3.2.1 1) Let D be a division algebra (see definition 3.1.2). Then clearly D is a simple

2)

3)

4)

algebra.

For any field F and any positive integer n, the algebra A := M, (F) is simple. Indeed, let
(ei]')lgi,jgn be the canonical base of A, i.e., e;j is the matrix of A for which all entries are O ex-
cept the ij-entry which equals 1. Let I be a two-sided ideal of A and suppose that I contains some
nonzero element a = (ﬂij)lgi,jgn- Let 1 <r,s < n be such that a,s # 0, then forany 1 <i <mn,
we have a,g'e; aes; = e;. It follows that I contains the unit element of A and so [ = A.

Another important example of a finite dimensional noncommutative algebra over a field that was
discovered by William Rowan Hamilton™ on 16 October 1843, is the algebra of quaternions (over
the field R of real numbers), a 4-dimensional algebra with basis 1,1, j, k over R, the multiplication
being determined by the rules

?=—1,=—1,ij= —ji=k

This algebra algebra which is often called the Hamilton algebra, is usually denoted by H =
(=1, —1)r. Omne can see that H is a division algebra. Indeed, for any nonzero element x =
« + Bi + yj + nk of H, where «, B and <y are real numbers, denoting X := a — Bi — yj — nk and
N(x) := xx (i.e., N(x) = a® + B? + 9 + 1%, called the norm of x), one can easily check that
% is the inverse for x in IH.

Let F be a field of characteristic not 2. For any two elements a,b € F*, in a similar way as
for the quaternion algebra H, the (generalized) quaternion algebra (a,b)r is defined to be the 4-

dimensional F-algebra with basis 1,1, j, k and with multiplication being determined by

iZ

—a P =bij=—ji=k
The set {1,i,],k} is called a quaternion basis of (a,b)r. The algebra (a,b)F is a simple algebra
with Z((a,b)r) = F. Indeed, let's define on (a,b)r a new operation, the Lie bracket, by [x,y] =

xy —yx for x,y € (a,b)p. It is clear that F C Z((a,b)F). Let x = a + Bi + yj + 7k € (a,b)p,
where a, B,7y,n € F. If x € Z((a,b)F), then in particular, [i, x] = [j, x] = [k, x] = 0. We have :

* [1,x] = 2anj + 2k.
* [j, x] = —2by — 2pk.
* [k, x] = 2byi — 2ap;j.
So,if x € Z((a,b)F), then p =y =1 =0, hence x = « € F. Thus, Z((a, b)) = F.
Let’s now consider a nonzero two-sided ideal | of (a,b) g, and let x be a nonzero element of J. Since |

is an ideal of A, then [i, x] = ix — xi € ], also [j, x|, [k, x] € J. So[j, [i, x]], [k, [j, x]], [, [k, x]] € ].
One can easily see that we have :

* [j, [i, x]] = —4bi.

*For some authors an algebra is always assumed to be different from {0}.

YWilliam Rowan Hamilton (4 August 1805-2 September 1865) was an Irish mathematician, Andrews Professor of As-
tronomy at Trinity College Dublin, and Royal Astronomer of Ireland at Dunsink Observatory. He made major contributions
to optics, classical mechanics and abstract algebra. His work was of importance to theoretical physics, particularly his refor-
mulation of Newtonian mechanics, now called Hamiltonian mechanics. It is now central both to electromagnetism and to
quantum mechanics. In pure mathematics, he is best known as the inventor of quaternions.



120

* [k, [j, x]] = 4abyj.
x [i, [k, x]] = —4apk.

So, | contains necessarily an invertible element of (a, b)r, which yields. So | = (a,b). Therefore,
(a,b)F is simple.

Let A be an algebra and M be an A-module. We denote ann (M) := {a € A|ax = 0 forall x € M}
that we call the annulator of M. We say that M is a faithful A-module if anns(M) = 0. In other
words, considering the (canonical) associated representation  : A — End o(M), defined by a — 1,
where I, : M — M, is given by l,(x) = ax, for all x € M, M is a faithful A-module if and only
if P is injective. To each module M over A, one can associate a faithful module over some algebra B by
proceeding in this way : The ring homomorphism ¢ : A — End 4 (M) induces naturally an injective
ring homomorphism ¢ : A/ ker(yp) — End 4 (M) where ker () is none but ann(M). This gives rise
to a faithful structure on M as an A/ann(M)-module.

Lemma 3.2.1 Let R be a ring and let e be a nonzero idempotent of R. Then we have a ring isomorphism
eRe ~ Endg(eR).

where eR is considered as a right R-module.

Proof. Let r € R, we define the following map

X —— TX

It's clear that , is a group homomorphism, and also for all x,y € R, we have {,(xy) = (rx)y) =
Pr(x)y. Therefore i, € Endgr(R). Moreover, if r € eRe, then clearly , restricts to an endomorphism
of eR. So we get a map
®d: eRe — Endg(eR)
roo Py

One can easily see that ® is a ring isomorphism.

Lemma 3.2.2 Let R be a ring and let M be a right R-module. For all ¥ > 1, we have a ring isomorphism
Endgr(M") ~ M,(Endgr(M)).

Proof. See [4, Lemma II1.2.6, p.8].

Wedderburn*’s theorem

Our aim here is to prove (a restricted version of) Wedderburn's theorem, a fundamental theorem in cen-
tral simple algebra theory showing that a finite-dimensional central simple algebra over a field is a matrix
algebra over this field. We assume throughout the rest, except other mention or other appearance from
the context, that all algebras are finite-dimensional nonzero algebras over some fixed field (often denoted
by F). We continue to assume that an algebra is always associative with a unit element and a homomor-
phism of algebras from an algebra A into an algebra B always map to the unit element of A on that of B.

Let A be a (finite-dimensional) F-algebra, then clearly A has a minimal left (resp. right) ideal Let A be
a F-algebra and M be finitely generated free left (resp., right) nonzero A-module, then M ~ A’ for a
(uniquely determined) positive integer r. The integer r is called the rank of M and will be denoted by
rank o (M).

YJoseph Henry Maclagan Wedderburn (2 February 1882, Forfar, Angus, Scotland-9 October 1948, Princeton, New Jersey)
was a Scottish mathematician, who taught at Princeton University for most of his career. A significant algebraist, he proved
that a finite division algebra is a field, and part of the Artin—-Wedderburn theorem on simple algebras. He also worked on
group theory and matrix algebra.
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Lemma 3.2.3 Let A be a simple F-algebra and let | be a minimal right ideal. Then :
1) Ewvery finitely generated right A-module M is isomorphic to " for some positive integer n.
2) All finitely generated simple right A-module is isomorphic to ].

3) A non zero finitely generated right A-module M is free (as a right A-module) if and only if
dimp(A)|dimp(M). Moreover, we have

o dsz(M)

Tai’lkF(M) = m

4) Two nonzero finitely generated right A-modules are isomorphic if and only if they have the same
dimension over F.

Proof. 1) Let M be a nonzero finitely generated A-module. The left ideal generated by the elements
of | is a nonzero two-sided ideal of A, hence equals A. In particular one many write

m
1= Zbi“irbi e A €.
i=1

Thus for all x € A, we have

NgE

X = (i bioci)x = bi(“ix)'

Since | is a right ideal, we have a;x € | forall 1 <i

A:ibi-]

i=1

1

AT

m, and therfore we have

Since M is finitely generated right A-module there exists my, - - - ,m, € M such that

’
M = 2 I’I/liA
i=1

Therefore,
r m
M=Y my bi-1=Y m-(bj-]) =Y (m-bj)-].
=1 j=1 i,j i,j
Hence we may then write M = Y m; - | with s minimal for this properties. Now we want to
prove that
Assume that Y ;_ m;y; = 0 for some «y; € ]. If one of the -y;’s is nonzero say s, then ysA is a

nonzero right ideal of A contained in | and hence | = «ysA (for | is a minimal right A-ideal of A).
We obtain :

ms- ] = (mg-ys)A = —2mi-].
This yields -
M = S:_Z;mi -
Contradicting the minimality of s. So y; = 0 folrall i. It follows that the A— linear map

(O ¢ — M
(r)/l/ to /r)/S) — Z?:l m;7yi

is an isomorphism of right A-modules.
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2) Let M be a finitely generated simple right A—module. In particular, M is nonzero and by i) there
exists an integer s > 1 such that M ~ [*(as A-module). Since M is simple we have necessarily
s = 1. Otherwise |°, and thus M, would have a nontrivial submodule. Hence M =~ |.

3) Let M be a nonzero finitely generated A-module. If M is free, then M ~ A" (as A-modules) where
r = rank o (M). Since M and A" are isomorphic as F-vector spaces, we have

dimp(M) = rank o (M) - dimp(A).

In particular,

and

. dzmp(M)

N dimp(A)

Conversely, suppose that dimp(A)|dimp(M). Since M and A are both nonzero finitely generated
A-modules, then by 1) we have M ~ |1, and A ~ ]"2 (as A-modules) for some integers r1,1o > 1.

The assumption implies that ry|rq by comparing dimensions over F, write ry = nry, then we get
M o~ J72" ~ (J2)" ~ A", Hence M is a free (right) A-module.

rank (M)

4) Let M and N be two nonzero finitely generated right A-modules. Thenby 1) M ~ J" and N ~ "2
for some integers 1,1, > 1. In particular, if M and N have the same dimension as F-vector spaces,
then ridimgp(J) = rodimp(J) and therfore ri = rp. So in this case

M~ ]1~N.

Conwversely, if M ~ N (as A-modules), then plainly they are isomorphic as F-vector spaces. Thus
M and N have the same dimension over F.

Note that this lemma is also true if we consider left A-modules rather than right A-modules.

Proposition 3.2.3 Let D be a division F-algebra. Then every nonzero finitely generated right D-module
is isomorphic to D" for some r > 1.

Proof. Since D is a division algebra, then D itself is a minimal right ideal. So by lemma 3.2.3, any
nonzero finitely generated D-module M is isomorphic to D" for some positive integer r.

As an application, we can prove the following result :

Proposition 3.2.4 Let m,n be two positive integers and D1, Dy be two division F-algebras, then
My (D1) ~ My (D») if and only if D1 ~ Dy and n = m.

Proof. Let A1 = My,(D1), Ay = My(D>) and e = e11, where (e;j)1<i,j<m is the canonical basis of A1,

ie., ejj is the matrix of My, (D1) with all entries equal to 0 but the ij-entry equal to 1. We have e’ =e,

eAre = Die = eDq and that the map

d: Dy — eAje
d — de

is a ring isomorphism, thus D1 = e Aje. Also, we have the following ring isomorphism :
eAje ~ Endy, (eAr)

see lemma 3.2.1. Let Iy = eAy which is easily seen to be the set of matrices whose only possibly nonzero
row is the first one. This is a minimal right ideal of Ay and by the above, we have D1 = End s, (I1).
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Similarly, D, ~ Enda,(Ip), where I is a similar right ideal of Ay. Now, if  : Ay — A is an
isomorphism of F-algebras, then (Iy) is a minimal right ideal of A,. Since all the minimal right ideals
of Ay are isomorphic by lemma 3.2.3, we have I ~ (11 ). Therefore, we have a ring isomorphism

D1 ~ EﬂdAl(Il) ~ EndAz(Iz) ~ Dz.

All these isomorphisms are F-linear, so D1 and Dy are isomorphic as F-algebras. It follows easily that
m=n.

Theorem 3.2.1 (Wedderburn'’s theorem) Let A be a simple F-algebra. Then A is isomorphic to M, (D)
for some integer m and some division F-algebra D with Z(D) = Z(A).

Proof. Let | be a minimal left ideal of A. Since | is a simple left A-module, then by corollary 3.1.2
D := End(]) is a division algebra. Moreover, since A is a left A-module, then by lemma 3.2.3 there
exists an integer v > 1 such that A ~ |" (as A-module). So taking e = 1 in lemmas 3.2.1, 3.2.2 we
obtain

A~Ends(A) ~ Ends(]") ~ M,(Ends(])) ~ M,(D).

The uniqueness of the positive integer v and the division algebra D (up to an algebra isomorphism) comes
directly from proposition 3.2.4 and the formula

dimp(A) = r*dimp (D).
For the second statement, one can easily see that we have the following canonical algebra isomorphisms :
Z(D) ~f Z(M;(D)) ~f Z(A).

The division algebra D, which is unique up to an algebra isomorphism, is called the underlying division
algebra of A (or the division algebra Brauer-equivalent to A).

Central simple algebras

Definition 3.2.4 (Central simple algebra) An F-algebra A is called a central simple algebra over F if A
is simple and Z(A) = F.

Notation. The class of all central simple algebras over F we will denoted by CSA/F.

Examples 3.2.2 1) M,(F) is central simple algebra over F.

2) Any division F-algebra D is simple and if also D satisfying Z(D) = F is a central simple algebra
over F.

3) By examples 3.2.1, for any field F of characteristic different from 2 and any elements a,b € F*, the
quaternion algebra (a, b)p is simple algebra and Z((a,b)g) = F. Then (a,b)r is a central simple
algebra over F.

4) Any field F is a central simple algebra over itself.

Corollary 3.2.1 Let A be a simple F-algebra. Then there exists a field extension E/F of finite degree
such that A is a central simple E-algebra.

Proof. By theorem 3.2.1, A ~ M, (D) for some D. It suffices to take E = Z(D), when identifying D
with its canonical image in A.
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Proposition 3.2.5 Let A and B two central simple F-algebras. For every integer r > 1, we have
M, (A) ~ M,(B) if and only if A ~f B.
Proof. By theorem 3.2.1 we may write
A~ M, (Dq)and B ~ M,,(D5).

where D1, D, are central division F-algebras and ry, 1y are positive integers. Therefore, if M,(A) ~
M, (B), then we have M, (D7) ~ M, (D). It follows then by proposition 3.2.3 that r1 = ry and
D1 ~ D, (as F-algebras) which implies A ~r B.

Lemma 3.2.4 Let D be a finite dimensional division algebra over an algebraically closed field F. Then,
D is isomorphic to F.

Proof. Let d € D, d be a nonzero element of D. As D is finite dimensional, the powers 1,4, . . ., di,....
are linearly dependent over F. Therefore, we can write :

m—1
Y ad* +d™ = 0.
k=0

for some m that can be chosen to be the smallest possible with all oy € F. Now, consider the polynomial
mt(x) = ag+a1x + ...+ x™. Since F is algebraically closed, 7t has a root v in F i.e 7t(x) = (x —r)g(x)
with deg(q) = deg(7t) — 1. Evaluating at d we obtain 71(d) = (d —r)q(d) = 0. As 7T was chosen to
be of smallest degree, q(d) # 0. Henced =r € F, thus D = F.

Corollary 3.2.2 If F is algebraically closed, then every central simple F-algebra is isomorphic to a
(square) matrix algebra with entries in F.

Proof. Let A be an F-algebra. By theorem 3.2.1, A ~ M, (D) for some integer positive n and some
central division algebra D over F. By lemma 3.2.4 D is isomorphic to F, so A is isomorphic to the matrix
algebra My, (F).

Throughout the rest, we assume familiarity with the properties of tensor products of modules and (asso-
ciative) algebras. For more details, we refer the reader to Chapter 9 in Pierce book [21]. We now recall
the main properties of the tensor product of F-algebras.

We summarize here some properties of tensor products of algebras that we will need in what follows : Let
A, B and C be F-algebras.

* Note that If (e;);c; and (e;)]-ej are F-bases of A and B, respectively, then (e; ® e})(,',j)elxl isa
F-basis of A ®r B.

* In particular, the above yields that A @ B is finite-dimensional F if and only A and B are so, and
in this case we have

x Let f: A — C, g: B — C be homomorphisms of F-algebras such that f(a)g(b) = g(b)f(a)
forall (a,b) € A x B. Then there exists a unique homomorphism of F-algebrash : A®@p B — C
such that

h(a®1) = f(a)and h(1®b) = g(b) foralla € A,b € B. (3.2)

« If f: A— Band g : A" — B’ are homomorphisms of F-algebras. Then f @ g : A® A" —
B® B’ is a homomorphism of F-algebras satisfying

(feg)(a®b) = f(a)®g(b) foralla € A,b € B. (3.3)

Moreover, if f and g are isomorphisms, then so is f ® g.
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x Let E/F be a field extension. If B is also an E-algebra, then A @ B has a natural structure of an
E-algebra, where the structure of E-vector space is defined by (linearly) extension of the equalities:

a(a®b) =a®abforalla € E,a € A,b € B. (3.4)

In particular A @ E has a natural structure of an E-algebra. Moreover, A @ E is finite dimen-
sional over E if and only if A is finite dimensional over F. Furthermore, in this case we have

dimE(A KF E) = dimp(A). (3.5)
We have also a natural isomorphism of E-algebras

(A XF B) ®g B ~r A ®g B. (3.6)

* We have a natural E-algebra isomorphism
(A®rB)®rE ~p (AQrE) ®c (BRpE) (3.7)
Hence, if L C F C E is a tower of field extensions, then we have

(A@LF)®FE2EA®FE.

* We have (the associativity property of tensor products) :

(A®rB)®pC ~ A®p (B®pC). (3.8)
* We have also (the commutativity property of tensor products) :

AQ®rB~B®fA. (3.9)

* If A is an algebra over F, and E/F be a field extension. We call the E-algebra
Ap:=AR®rE (3.10)
the scalar extension of A by E. We have dimp(A) = dimg(Ag).

x For any positive integers m, n, we have a natural isomorphism of algebras :

My (A) @ My(B) =~ My (A ®F B). (3.11)

* We have also a natural isomorphism of F-algebras :

My (Mn(A)) = My (A). (3.12)

*

For a field extension E/F, we have a natural F-algebra isomorphism M, (F) @p A ~p M, (A).
Also we have a natural E-algebra isomorphism My (F) ® E ~p My(E).

Proposition 3.2.6 Let F be a field and let A, B be F-algebras. The following statements hold :
1) If A and B are central, then so is A ®F B.
2) If A is central simple and B is simple, then A ®r B is simple.
3) If A and B are central simple, then A @ B is central simple.
4) If A ®r B is a simple then A and B are simple algebras.
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Proof. 1) Letx =Y;a;®b; € Z(A @ B). We may assume b; belong to a basis of B, so that the a;

2)

3)
4)

are then uniquely determined. For every a € A, we have

Y aa;@bi=@@)x=xa®1) =) aa®b
i i

So, for all i, we have aa; = a;a, which implies a; € F. We can then write x =) ;1 ®a;b; =1®c
where c = Y_; a;b;. Using the fact that x commutes with 1 ® B, we get ¢ € F. Thus, Z(A ®f B) =
F.

Let ] be a nonzero two-sided ideal of A @ B. Fix a basis (b;); of Band let x = Y} ;a; ®b; € |
with r is minimal. In particular, ay # 0, so by the simplicity of A we have AmyA = A, we may
modify x on both sides by elements of A ® 1 to arrange that x isof theformx =1RQ0b; 4+ ) ;>0 4; ®
b;. Now, for a € A, we have a

@alx—x(a®1) = i(aai —a;a) @b; €]
i=2

This must be zero (by minimality of r), hence aa; = a;a for all a € A and for all i > 2. So,
a; € Z(A) = F. Therefore, we can write the element x = 1 ® b for some nonzero element of B.
Thus, | contains an element of the form 1 ® b with b # 0. Note that B being a simple algebra,
then so is 1 ® B. Note also that ] N (1 ® B) is a two-sided ideal of 1 ® B, it is nonzero because
it contains 1 ® b, so it must be equal to 1 @ B. Therefore, | contains 1 ® B. But then it contains
(A®1)(1®B)=A®B.

Follows from 1) and 2).

Since A ®f B is simple algebra, then A @ B # 0, hence A # 0and B # 0. Assume that A is not
a simple algebra. Then, there exists be an F-algebra C and a nonzero homomorphism of F-algebras
Y : A — C such that ker(¢) # 0. Let & := p®idg : AQp B — C ®p B, then ® isa
nonzero homomorphism and we have

ker() ® B C ker(®)

So, ker(®) # 0. But this yields that A ® B is not a simple algebra, a contradiction.

Definition and Notation 3.2.1 Let A be an F-algebra and B be a subalgebra of A. The centralizer (or
the commutator) of B in A is

CB ={ac A|ab=ba, forallb € B}. (3.13)

It is easy to check that CB is also a subalgebra of A which contains Z(A). Furthermore, we have B C C5
if and only if B is commutative. Note that Ci(A) = Aand C4 = Z(A).

Lemma 3.2.5 Let A be a (finite-dimensional) central simple F-algebra, B be a simple subalgebra of A
with E and C a subalgebra of C&, then the following statements are equivalent :

1)

A = BC

2) dzmp(A) = dzmp(B)dzmp(C)

3) The canonical injections 1p : B — A and 1c : C — A induce canonically an isomorphisms of

algebras ® : B C — A.
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Proof. 1) = 2) Let (e;)ic; be a basis of B, (e;)jef be a basis of Cand assume that there exist v;; € F
such that }; ; 'y,-]-eie; = 0. We have }; el-([j]- 'yl-]-e;) = 0, so putting d; =} 'yl-]-e;, we get Y ;e;d; = 0
withall d; € C,so foralld; =0, i.e. Zj 'yi]'e; = 0 but since (e/)jej is a basis of C, so for all i, j, we have
Vj € ] vij = 0. This shows that (eie;)(i’j)e Ix] 18 a free family of elements of A (over F). By assumption,
we have A = BC, so (eiel-)(i,j)elxj is a basis of A. Hence dimp(A) = dimg(B)dimp(C).

J
2) = 3) Since1g : B — Aand ic : C — A are be homomorphisms of algebras and C C C§,

then the bilinear map b : B C — A, (b,c) —— bc, induces an algebra homomorphism O :
B ®r C — A. Since all F-linearly independent family of elements of B is still linearly independent
over C, then necessarily ® is injective. Moreover, since dimp(A) = dimg(B)dimp(C), then ® is an
algebra isomorphism.

3) = 1) Clear.

Lemma 3.2.6 Let A, B be two F-algebras and C := A ®r B. Then :
1) CA9FF = Z(A) ®F B.
2) Z(C) = Z(A) ®Fr Z(B)

Proof. 1) Let (e;)ic be a basis of B. Then every element d € A ®p B can be written in the form

d = Y a; ®e; for some a; € A. In particular, if d = 0, then a; = 0, for all i. Now if d =
Ya®e; € C’CL‘@FF, then forany a € A, we have (a®1)d =d(a®1),s0 ) (aa; —aa) @ e; =0,
which implies that aa; = a;a, for all i, i.e., a; € Z(A). Hence CS®FF C Z(A) ®f B. The inverse

sense is trivial. Thus Cé®FF = Z(A) ®FB.

2) We have C = A®p B = (A ®p F)(F®F B), so Z(C) = CLFFNCE¥ = (Z(A) @
B)N(A®F Z(B)) = Z(A) @ Z(B).

Proposition 3.2.7 Let E/F be a field extension and A be a central simple F-algebra. Then A ®r E is a
central simple algebra over E (when we identify F @ E with E).

Proof. By proposition 3.2.6 A @ E is simple E-algebra and by lemma 3.2.6 Z(AQpE) = Z(A) ® E =
F®rE ~E.

Definition 3.2.5 (Opposite algebra) Given an F-algebra A, we denote by A°F the F-algebra that we
get from A just by reversing the order of multiplication in A (i.e., the algebra over F having the same
underlying set of element as A and for which the addition and scalar multiplication are those of A). We
call this algebra the opposite algebra of A.

Proposition 3.2.8 Let A be a central simple algebra over F. Then, A°? is a central simple algebra over
F.

Proof. Clear.
Proposition 3.2.9 Let A be a central simple algebra over F. Then the dimension of A over F is a square.

Proof. Let F be an algebraic closure of F, then by corollary 3.2.2, there is a positive integer r such that
Az ~ M, (F) (as F-algebras). Thus,

dimp(A) = dimz(Az) = dimz(M,(F)) = r* (3.14)

Definition 3.2.6 Let A be a central simple F-algebra. The integer \/dimp(A) is called the degree of A.
The Schur index of A is the degree of the underlying division algebra of A. We denote it by ind(A), i.e.,
ind(A) = deg(D), where D is the underlying division algebra of A.
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Lemma 3.2.7 Let A be a central simple algebra over F with degree r. Then A @ AP ~ M, (F) (as a
F-algebras).

Proof. Let’s consider the mapping

Y: A — Endp(A)
a — Y(a):=1,

where 1,(x) = ax, for all x € A. It is clear that ¥ is F-algebra homomorphism.
In the same way, we define the F-algebra homomorphism

®: A% —  Endp(A)
a — ®a):=1"

where 1, (x) = xa, for all x € A. One can check that the images of ¥ and ® commute in Endg(A).
So, there is a unique F-algebra homomorphism © : A ®p A’ — Endp(A) satisfying ®(a @ b) =
Y (a)®(b). Since A ®p A is simple, © is injective. Moreover, we have the equalities dimp(A ®F
A°) = dimp(Endp(A)) = r%. So hence, © is also surjective. It suffices now to see that Endp(A) is
isomorphic to M, (F) (as F-algebras).

Theorem 3.2.2 (Double centralizer theorem (DCT)) Let A be a central simple algebra over F and let B
be a simple subalgebra of A. Then, the following properties hold :

1) The centralizer C& of B in A is a simple subalgebra of A having the same center as B. Moreover,
we have
dimp(A) = dimp(B)dimp(Ch). (3.15)

Ch
2) We have C,* =B.

Proof. 1) To show that C& is simple, we will show that C§ ~ Endc(A), where C := B ®@f A%
and where A is considered as a left C-module for the operation defined by linearly extending the
following equalites :

(¢ ®y)x =axyforally € A’ 0 € Band x € A (3.16)

Consider the map
®: CB — Endc(A)
c —  D(c)

where ®(c) : x — cx, forany x € A. It is clear that ® is a F-algebra homomorphism. In
particular, we have ¢ = ®(c)(1) = 0, hence P is injective. One can easily see that ® is also
surjective. Indeed, let ¢ € Endc(A) and let c = g(1), then for every b € B, we have :

chb=(1®b)c=(1®b)g(1) =g((1®@b)1) =g(b).

We have also bc = (b®1)c = (b®1)g(1) = g((b®1)1) = g(b), Consequently, cb = bc, that
isc e Cﬁ. Moreover, for any x € A, we have

De)(x) =ex = (1@ x)c = (10x)g(1) = g((1®x)) = g(x)

Thus ¢ = ®(c). Now, we aim to prove the two F-algebras CE and Endc(A) have some di-
mension (over F). Note that by proposition 3.2.6 C is a simple algebra. Moreover, since C is
finite-dimensional over F, then C is also semisimple, so there is a C-module N, up to an isomor-
phism, such that every C-module is a finite direct sum of copies of N. In particular, A ~ N’, for
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some positive integer r. Let D := Endc(N). As N is a simple C-module, it follows by lemma
3.1.1 that D is a division algebra. We proved above that C5 ~ Endc(A), so

CB ~ Endc(A) ~ Endc(N") ~ M,(Endc(N)) = M, (D).

Therefore, we have
dimp(CY) = dimp(M, (D)) = r*dimp(D) (3.17)

It is clear that N is also a D-module, so we have N ~ D™, for some positive integer m, so
C = Endp(N) ~ Endp(D™) ~ M,,(D).

Thus A ~ D™ hence
dimp(A) = rmdimp(D) (3.18)

On the other hand, we have
dimp(A)? = dimp(C)dimp(Endc(A)) = dimp(B®r A°P)dimp(CE) = dimp(B)dimp(A°)dimp(CE)

Hence
dimp(A) = dimp(B)dimp(CE).

2) Since C& is simple, applying 1) gives

B
dimp(CB)dimp(CY) = dimp(A)
Since
We deduce that 5
dimp(B) = dimp(CSA)
B
Now, the definition easily imply that B C CZA. The equality between dimensions then implies that

CB
B =C4A.

The SkolemS-Noether theorem

For a ring R and unit r € R, Int(r)(x) := r~!

called an inner automorphisms of R.

xr is an automorphism of R. Such automorphisms are

Lemma 3.2.8 Let A be a (finite-dimensional) simple F-algebra and suppose that B is an F-space. Let ¢
and ¢ be two F-algebras homomorphisms of A to Endp(B), then there exists 6 € Endp(B)* such that
¢(a) = 07 1p(x)0 forall x € A.

Proof. See [21, Lemma, p. 230].

Theorem 3.2.3 Let A be a central simple algebra over F and let B be simple F-subalgebra of A. For any
F-algebra homomorphism ¢ : B — A there exists a € A* such that ¢(x) = a~'xa forall x € B.

SThoralf Albert Skolem (Norwegian 23 May 1887-23 March 1963) was a Norwegian mathematician who worked on
mathematical logic and set theory.
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Proof. By lemma 3.2.7, there is an algebra isomorphism A : A ® A°? — Endp(A). Define ¢ :=
A(id® ¢): A%’ @ B— Endp(A) and ¢ :== A(id ®j) : A°? @ B— Endp(A), wherej: B — A
is the inclusion homomorphism. Since A°F & B is simple (see proposition 3.2.6), it follows from lemma
3.2.8 that there exists 0 € Endp(A)* such that ¢(x @ y) = 0~ 'p(x @ y)0 forall x € A°F,y € B. Let
z=A"1(0) € A’ ® A. Since 0 is unit, so is z and 1 = A(z~1). Moreover,

Az(x®e(y)) = A)A(x@e(y))
= 0p(x @ y)
P(x®y)o

= A((x®y)A(z))
Ax®y)z)

Since A is injective, then
x@ey) =z Hx®@y)zforallx € A%,y € B (3.19)

By taking y = 1in (3.19), we get z(x ® 1) = (x ® 1)z that is z € Cﬁgffﬁ = F® A (see lemma
3.2.6). Similarly, z7' € F® A, therforez = 1@ vand z7' = 1 ® v, with u,v € A. Hence uv = 1,
u € A% and v = u~"'. Finally, if x = 1in (3.19) then 1 ® ¢(y) = 1 ®@ u~ yu for all y € B, therfore
o(y) = u"lyu.

3.3 Cyclic algebras

We will usually denote a cyclic Galois group by (o), where ¢ is a generator of the group G.

Definition 3.3.1 Let M/F be a cyclic Galois field extension of dimension n with Galois group G =
Gal(M/F) generated by 0. Choose an element B a nonzero element of E. We construct a non-commutative
algebra A, denoted by (M/F, o, B), as follows :

A= MBMD- - M
where e is an indeterminate satisfying the multiplicative conditions :

e" = Band Ae = ec(A) forall A € M (3.20)

(the addition and scalar multiplication being defined componentwise). Such an algebra is called a cyclic
algebra.

Notation. When there is no risk of confusion, we omit F and the algebra A we will denoted by (M, o, B).

Remark 3.3.1 Assume that char(F) # 2, M = F(\/d) be a quadratic extension, defined by an element
d € F*,and let o be the unique nontrivial F-automorphism of M. Then we have (M/F,c, ) ~f (a,b)f.
Hence cyclic algebras may be viewed as a generalization of quaternion algebras. (See [4, Remark VI1.1.4,
p.130]).

Let A be a central simple algebra over F and let K be a subfield of A (i.e., a field extension of F in A),
then dimp(K) < deg(A) (see [21, Corollary a, p.236]). Let A be a central simple algebra over F and
let K be a subfield of A. If dimpK = deg(A), then we say that K is a strictly maximal subfield of A.
Such subfield does not always exist, but when A is a division algebra, then any maximal subfield of A is
strictly maximal (see [21, corollary b, p.236]). We say that a field extension L of F is a splitting field of
Aif A®r L is isomorphic to a matrix algebra over F, i.e., if and only if the underlying division algebra
of A®p Lis L.

If K is a strictly maximal subfield of A, then K is a splitting field of A (see [21, Corollary, p.241]). In
particular, if A = (M/E, o, B) is a cyclic algebra, then M is a strictly maximal subfield of A, so M is a
splitting field of A.
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Example 3.3.1 Consider the real matrix algebra A = M,(H) for some positive integer r. We have
dimg (A) = 4r2. Note that R and C are the only finite field extensions of R. Therefore A has no strictly
maximal subfields for any r € IN*.

Theorem 3.3.1 The cyclic algebra A = (M/F, o, B) is a central simple algebra over F.

Proof. The arquments of this proof were used before several times. Let

x=xo+x1€+...4+x, 1"

be an element of the center of A. The equation xe = ex gives rise to the following equalities
Xp—1B+ xpe + ...+ Xy el = o(xy—1)Bl+o(xp)e+ ...+ o(xp_p)e" L.

Now the equation x(a1) = ax for all « € M gives

n—l(lx)en—l

xoul + xqo(a)e+ ...+ x, 10 = axgl +axie+ ... +ax,_1e""

Hencex;y = -+ =x,_1=20.So, Z(A) = F.

Let | be a two-sided nonzero ideal of A and let x = xo + x1e + ... + x,e™ be a nonzero element of |
with m minimal. If m = 0, then x = xo € E, s0 | = A.

Suppose that m > 0, and suppose that | # A, then consider an element & € M such that o (a) # « for
all o # id. Then, the following contradicts the minimality of m :

(ax —xa)e ! €.

Theorem 3.3.2 A central simple algebra A of dimension n? is isomorphic to a cyclic algebra if A con-

tains a subfield M of dimension n over F such that M/ F is a cyclic Galois field extension.

Proof. Let o be a generator of the Galois group of M/F. By Skolem-Noether theorem, there is an
invertible element e of A such that
o) = exe .

forall &« € M. Since conjugation by e" is the identity on M, we see e" € CM = M. Since ee"e™! = ¢,

in fact e" is a central element of A, so e" € F. It remains to prove that 1,e,.. e are linearly
independent over M. Otherwise, we consider a relation

x=x9+x1e+...+x,e" =0

with x,, # 0 and m minimal. This leads to a contradiction in the same way as above : Choose a primitive
element & € E and consider the equality 0 = (ax — xa)e'. This leads to a contradiction with the
minimality of m.

Definition 3.3.2 (Norm and Trace) Let M/ F be a Galois field extension of dimension n, with oy, . .., 0y
denoting all elements of Gal(M/F). For an element x of M, the elements 01(x),02(x),...,0n(x) are
called the conjugates of x and

x) = ﬁai(x),Tr(x) = in(x)-

are called, respectively, the norm and the trace of x.
Remark 3.3.2 Whenever the context is not clear, we write Nyj/r, resp., Trpr/p to avoid ambiguity.
Definition 3.3.3 A cyclic algebra which is also a division algebra is called a cyclic division algebra.

Theorem 3.3.3 Let M/F be a cyclic field extension of dimension n with Galois group Gal(M/F) =
(o). IfO # B,B%,...,B" ! are not a norm of elements of M, then (M/F,c,B) is a cyclic division
algebra.

Proof. See [21, 45, p.279].
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3.4 Brauer group and Crossed products

3.4.1 The Brauer group

Let F be a field and let CSA(F) be the class of all central simple algebras over F. We say that two central
simple F-algebras A and B are similar, denoted by A ~ 1B, if there are positive integers r1 and ry such
that M,,(A) is isomorphic to M,,(B) as a F-algebra. In the next lemma we prove that this defines an
equivalence relation on CSA(F), which reduces to F-algebra isomorphism when the two central simple
algebras have the same dimension over F.

Lemma 3.4.1 Let F be a field. Then ~ is an equivalence relation on CSA(F), which reduces to F-algebra
isomorphism when two central simple algebras have the same dimension over F.

Proof. It is clearly that ~ is reflexive and symmetric on CSA(F). Let A, B and C be elements of CSA(F)
such that A ~ Band B ~ C. Then there are r1,15,13,74 € IN* such that

M;,(A) ~ M,,(B) and M,,(B) ~ M,,(C)
So we have
Myiry(A) 22 My (My, (A)) = My (M, (B)) ~ My, (Mr,(C)) 2= Mr,(My,(C)) = My, (C).
Hence A ~ C. Consequently, ~ is also transitive. The rest follows by applying Wedderburn's theorem.
The next proposition shows that the tensor product is a class invariant under similarity.

Proposition 3.4.1 Let A, B, A" and B' be central simple F-algebras such that A ~ A" and B ~ B’
Then AQpB ~ A @FB.

Proof. There exists r1,1y,13,74 € IN* such that
M, (A) ~ M,,(A") and M,,(B) ~ M,,(B)

Observe that / ,
Mrl(A) OF Mfz(B) = MY3(A ) QF MF4(B )

and that (3.11) implies that we have the F-algebra isomorphism
Mrer(A ®p B) ~ M7374(A/ QF B/)-
Hence A B~ A ®rB.

Remark 3.4.1 Observe that for a field F the class CSA(F) is not empty, since for every positive integer
n, the matrix algebra My, (F) is an element of CSA(F).

Theorem 3.4.1 Let F be a field. Then there exists a pair (G, s) consisting of a group G and a surjective
map s : CSA(F) — G that satisfy for every two central simple F-algebras A and B the following
conditions :

i) s(A®pB) =s(A)s(B).

ii) The equality s(A) = s(B) holds if and only if A and B are Brauer equivalent.

1 When A ~ B we say also A and B are Brauer equivalent.
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Moreover, the pair (G, s) is uniquely determined up to a unique isomorphism, that is, if (G',s ) is another
pair satisfying the above, then there is a unique group isomorphism p : G — G’ such that we have the
equality s = Bos.

Proof. Let K be a subclass of CSA(F) that is a set such that every element of CSA(F) is isomorphic as a
F-algebra to at least one element of K, and let G be the quotient set of K by ~, i.e., G := K/ ~. For an
element A of CSA(F) we let [A] denote the element of G that contains the elements of K that are Brauer
equivalent to A, which gives a surjective map

m: CSA(F) — G
C — [C]

Now, We will show that G is an abelian group under the tensor product over F. To this end, observe that
the map
u: GxG — G
(1B [C]) = [B@FC]
is well-defined by proposition 3.4.1, so it remains to prove that G satisfies the group axioms and commu-
tativity with respect to the tensor product.

* Observe that for any central simple algebra A over F, it clearly holds that A ®r F is isomorphic to
A as a F-algebra. Hence, [F| functions as the identity element of G under the tensor product over
F.

* Associativity follows from (3.8), and commutativity follows from (3.9).

* The existence of inverse elements in G is proven by lemma 3.2.7, which states that the inverse of
an element [A] of G is given [A°F], where AP is the opposite algebra of A.

Consequently, we have showed that G is an abelian group under the tensor product over F.

It is clear that for every A, B € CSA(F) the map 7t satisfies the equality (A ®f B) = m(A)mn(B),
hence, we have a pair (G, 71) with s = 7t that satisfies the theorem.

Now, if (G ,s') is another pair that satisfies the theorem, and define

B: G — G
[A] — s(A)

It is clear that B is a unique group isomorphism satisfying the equality s = B o's . It follows that (G, s)
is uniquely determined up to isomorphism.

Definition 3.4.1 The group of the uniquely determined pair (G, s) is called the Brauer group of F,
denoted by Br(F), and is written multiplicatively. For a central simple algebra A over F, we denote

s(A) by [A].
Moreover, an element b of Br(F) is often denoted by [A], where A is an element of CSA(F) that is similar
to an element of b.

Definition 3.4.2 The exponent of A (or period of A) is the order of [A] in Br(F).

Proposition 3.4.2 Every element of Br(F) contains a unique central division F-algebra up to isomor-
phism.

Proof. This follows by applying Wedderburn's theorem.
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Some examples of Brauer groups

1) We have already seen in corollary 3.2.2 that there are no nontrivial central division algebras over
an algebraically closed field. So the Brauer group of an algebraically closed field is trivial.

2) Let F be a finite field, then by [Joseph Wedderburn] F is the unique central division algebra over F,
so the Brauer group of F is trivial.

3) By [15, 6.6 Die Brauergruppe von R, p.541, R and H are the only central division algebras over
R. Consequently, the Brauer group of R is isomorphic to Z./27.

The Brauer group as a functor

For any nonzero homomorphism ¢ : F — M between fields, one can consider M as a field extension
of F and then form the tensor product A @ M that we denote by Ay. In what follows a homomorphism
between fields will always mean a nonzero homomorphism.

Lemma 3.4.2 Let ¢ : F — M be a field homomorphism. Then the mapping Br(¢) : Br(F) —
Br(M) defined by [A] —— [Ay], is a group homomorphism.

Proof. Let ¢ : F — M be a field homomorphism and let A be a central simple algebra over F. Ay is
central simple over E. Define the map

Br(y): Br(F) — Br(M)
[A]  — [Ay]

and observe that this is a well-defined function by proposition 3.4.1. Moreover, by associativity and
commutativity of the tensor product (see (3.8) and (3.9)), we have

Br(y)([A])Br([B]) = [A®Fp M|[B®F M]
= [(A®rM) ®pm (B M)]
= [A®F (M ®F B)]
= [(A®FB) ®F M]
= Br()([A ®F B])

This shows that Br(y) is a group homomorphism.

Notation. Let Field denote the category of fields with morphisms given by field homomorphisms, and
let Ab denote the category of abelian groups with morphisms given by group homomorphisms.

Theorem 3.4.2 The Brauer group defines a covariant functor Br : Field — Ab that maps a field F to
Br(F) and maps a field homomorphism 1 to Br ().

Proof. Clear.
Let K be a field extension of F and consider the canonical group homomorphism ¢y p : Br(F) —

Br(K), [A] — [A ®f K]. Plainly, ker(¢x ) is a subgroup of Br(F). We call it the relative Brauer
group of K/F.
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Relative Brauer groups

In this subsection, we show that for every central simple algebra A over a field F there exists a finite
Galois extension of F (i.e., a finite-dimensional Galois field extension of F) that splits A. This enables us
to write the Brauer group of F as a union of relative Brauer groups of finite Galois extensions of F, i.e

Br(F) = U Br(K/F).

KOF finite Galois

Remark 3.4.2 Let A be a central simple algebra over F and let K be a field extension of F. Then, by
definition K is a splitting field of A if and only if [A] € Br(K/F).

Theorem 3.4.3 Let x be an element of Br(F). Then there is a separable field extension K O F such that
x is an element of Br(K/F).

Proof. See [15, Existenz eines separablen Zerfillungskorpers, p.47].

Corollary 3.4.1 Let x be an element of Br(F). Then there is a finite Galois field extension E O F such
that x is an element of Br(E/F).

Proof. Indeed, by the previous theorem, we can consider a separable field extension M of F such that
x € Br(M/F). It suffices to take a Galois field extension K of F that contains M.

Corollary 3.4.2 For any field F. We have the following equality
Br(F) = U Br(K/F).

KOF finite Galois

Proof. Clear.

3.4.2 Crossed products

In this section, we will construct a very important type of central simple algebra via a finite Galois field
extension of F. This algebra is called crossed product. As will be seen later, this algebra will connect
the Brauer group of a field F to a second Galois cohomology group obtained by considering all finite-
dimensional Galois field extensions of F.

Throughout this subsection, when not mentioned, we assume that K/ F is a finite Galois field extension.
We assume throughout the rest familiarity with basic (Galois) cohomological notions. In particular, recall
that when considering a finite Galois field extension with Galois group G, then a 2-cycle of G with values
inK*isamap a : G x G — K* satisfying a(o, 7)a(ot,v) = a(o, vy)o(a(o,y)) forall o, 7,y € G.

Proposition 3.4.3 Let K/F be a finite Galois extension with Galois group Gal(K/F). Let a be a 2-
cocycle of G with values in K* and let A be a left vector space over E with basis {e; },cc the multiplica-

tion defined by
(Y xoeo) - (Y yree) = Y. Y x00(yo)a(o, T)eor (3.21)

ceG 7€G ceGteG

where xy,yr € K for o, T € G. Then, A is a central simple algebra over F that contains K as a strictly
maximal subfield.

Proof. Let o, 7,p € G, Then
a(o,t)a(ot,p) = o(a(t,p))a(o, T) (3.22)

Using (3.22), one can see that A is indeed an associative algebra with unit (equal to a(id,id) ley. It is
clear that dimpA = (dimgK)?, so K is a strictly maximal subfield of A. Also, since for all x,y € K*
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and 0,7 € G, wehavexesyer = x0(y)a(o, T)egr, then one can easily see that Z(A) = K* (for K/F is
a Galois field extension).

A is a simple algebra . Indeed, let I be a nonzero two-sided of A and let x = Y| 1 X,.e,, be a nonzero
element of I, where all x,, € K (with r is minimal integer). Suppose that r > 1 and choose z € K such
that 01(z) # 02(2)

1

o(z) xz = Ul’lxglal (z)eq, + (71’1(,z)x(72(72(z)eg2 +....

We get 0 # x — 01(z) "'xz € I, which contradicts the minimality of r, so x = ye, for some y € E*,
o € G. But in this case, x will be an invertible element of A, so I = A.

Definition 3.4.3 The central simple algebra A over F defined in proposition 3.4.3 is called the crossed
product algebra over F of K and G with respect to a, denoted by (K, G, a).

Proposition 3.4.4 Let K/F be Galois field extension with Galois group G, and let a,b : G x G — K*
be two 2-cocycle. Then
(K,G,a) ®r (K,G,b) ~ (K, G, ab).

Proof. See [15, Multiplikativititssatz, p.68].

Remark 3.4.3 A cyclic algebra is an example of a crossed product. Indeed, let (K, G, ) be a cyclic
algebra as defined in section 3.3. We can define a 2-cocycle as follows :

a: GxG — E*
o 1 ifi+j<n
)
(@0 — { B ifit+j>n
One can check that the F-algebra (K, G, a) is isomorphic to (K, o, B). For more details we refer to [15,
section 10.3 Existenzsatz, p.83].

3.5 Cohomological interpretation of the Brauer group
As claimed in the previous subsection, we will see here that the relative Brauer group Br(K/F) of a
(finite) Galois field extension K/ F is isomorphic to the second cohomology group H*(Gal (K/F), K*).

Proposition 3.5.1 Let K O F be a finite Galois extension with Galois group G. Then two 2-cocycles a
and b of G with values in K* are cohomologous if and only if (K, G,a) and (K, G, b) are isomorphic as
F-algebras.

Proof. See [15, 7.7 Isomorphiekriterium fiir verschrinkte Produkte, p.63].

Theorem 3.5.1 Let x be an element of Br(F). Then for each finite Galois extension K O F that splits x,
there exists a 2-cocycle a of Gal (K /F) with values in K* that is unique up to cohomology such that the
crossed product algebra (K, Gal(K/F), a) is Brauer-equivalent to x.

Proof. See [15, 8, Die Isomorphie H*(G,L*) ~ Br(L/K), p.68].
Theorem 3.5.2 Let K/ F be a finite Galois field extension. Then the map

Y: H?*(Gal(E/F),E*) — Br(E/F)
[a] — [(E,Gal(E/F),a)]

is a group isomorphism.

Proof. Using theorem 3.5.1, one sees that the map Y is well-defined and injective.

By theorem 3.5.1, for any element x of Br(K/F) there exists a 2-cocycle a of G with values in K* such
that x = [(K, G,a)]. So ¥ is surjective. Hence  bijection. Also by proposition 3.5.1, one sees that ¥ is
a group homomorphism, hence a group isomorphism.
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3.6 Some non-abelian cohomology

In this section we recall elementary facts about non-abelian group cohomology. Fore more details we refer
the reader to [24, Cohomologie Galoisienne].

Definition 3.6.1 Let G be a finite group.

i) A G-set E is a set equipped with a G-operation from the left. We will use the notation 8x := g - x
forx € Eand g € G.

ii) A morphism of G-sets, a G-morphism for short, is a map v : E — F between G-sets such that

the diagram
GXE —F
idcx'yl lﬂr
GXF —F
commautes.

iii) A G-group M is a G-set carrying a group structure such that 8(xy) =8 x8y for every ¢ € G and
x,y € M.

Note that, for all ¢ € G this forces $1p; = 1pg and for all x € M 8(x~ 1) = (8x) L. If M is abelian then
it is called a G-module.

Example 3.6.1 Let G be an abelien group and H a subgroup of G. Then we can viewed G as a H-set.

For a G-set M, we let M© := {x € E|8x = x forall g € G}
Definition 3.6.2 Let G be a finite group.

i) For any G-module M, we set H°(G, M) := M®, the zeroth cohomology set of G with coefficients
in M is just the subset of G-invariants in M. If M is a G-group, then one can see that H°(G, M)
is a group.

ii) If M is a G-group. Amap p : G — M is called a 1-cocycle if for any g, h € G, we have
p(gh) = p(g)Ep(h). (3.23)
iii) Let M be a G-group. We say that 1-cocycles p,p : G — M are cohomologous if there is x € M
p(g) = x_lp/(g) Sx, forallg € G.

Remarks 3.6.1 * The map G — M sending every element of G to 1) is a 1-cocycle. We call this
the trivial cocycle.

* For any G-group M and any x € M, the map G — M given by ¢ — x~18x is a 1-cocycle.
« For any 1-cocycle p : G — M we necessarily have p(1g) = 1y (this follows by (3.23)).

* For any G-group M, one can easily see that "to be cohomologous’ is an equivalence relation on the
set of 1-cocycles of G in M.
The quotient set of this equivalence relation, called the first cohomology set of G with coefficients in
M, is denoted by H' (G, M), i.e., H (G, M) = { equivalence classes of 1-cocycles p : G — M}.



138

x HY(G,M) and H*(G, M) are covariant functors in M. If 1 : M — M is a morphism of
G-sets then the induced map will be denoted by 1. : H°(G,M) — H%(G,M), resp., 1, :
HY(G,M) — H'(G,M").

* If M is abelian then the definitions above coincide with the usual group cohomology as one of the
possible descriptions for H(G, M) is just the cohomology of the complex

0 —— C%G,M) — (g, M) 2 .. —— (G, M)~ el (G, M) ——

where C"(G,M) := {f : G" — M},C%(G,M) = M, with the differential map 6, de-
fined by 6,(f) (81, &nt1) =51 f(&2,-- -, &ns1) + L (1) f(81, -, &j&j+1s - - 8nt1) +
(=" f(g1,-- -, 8n).

Theorem 3.6.1 Let G be a finite group.

i) If N € M is G-group extension (i.e., M and N are G-groups and the action of ¢ € G on an
element x € N coincides with the action of g on x when x is considered as an element of M) and
M/ N is the set of left cosets, then there is a natural exact sequence of pointed sets

1 —— H%G,N) — H%(G,M) —— H°(G,M/N) —%» HY(G,N) —— H(G, M)
ii) If in addition N is a normal subgroup of M, then there is a natural exact sequence of pointed sets

1 —— H%G,N) — H%(G,M) —— H°(G,M/N) —%*— HY(G,N) —

HY(G,M) —— H'(G,M/N)

iii) ) If in particular N is a subgroup of the center of M, then there is a natural exact sequence of
pointed set

1 —— H°G,N) — H%(G,M) —— H%(G,M/N) —%— HY(G,N) —— ---

. —— HY(G,M) —— HYG,M/N) —*— H2(G, M)

Here the abelian group H?(G, M) is considered as a pointed set with the unit element.
We note that a sequence
(M,a) —— (N,b) —— (P,c)
of pointed sets is said to be exact in (N, b) ifi(M) = j~1(P).
Proof. See [14, Proposition 1.4, p.6].

Definition 3.6.3 Let ¢ : G —> G bea homomorphism of finite groups. Then for an arbitrary G-set E
one has a natural pull-back map v* : HY(G ,E) — H°(G, E).

If E is a G-group then the pullback map is a group homomorphism.

For an arbitrary G-group M there is the natural pullback map v* : HY(G, M) — H'(G, M) which
is a morphism of pointed sets.
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* If 1 is the inclusion of a subgroup then the pullback resg, := Y™ is usually called the restriction
map.

* If 1 is the canonical projection on a quotient group then in fg/ = Y™ is said to be the inflation
map.

/ /
« The composition of res& or infgG with some extension of the G-set E (the G-group M) is usually
called the restriction, respectively inflation, as well.

Remark 3.6.1 Note that Non-abelian group cohomology can easily be extended to the case where G is
a profinite group and M is a discrete G-set (respectively G-group) on which G operates continuously.
Indeed, set fori = 0,1
H(G,M) :=1lim H'(G/G,M® ).
Gl

where the direct limit is taken over the inflation maps and G' runs through the normal open subgroups
G of G such that the quotient G/ G is finite.

3.7 Some geometric interpetations of Galois descent

Let E/F be a finite Galois extension of fields with Galois group G = Gal(E/F).

The descent problem deals with the following question : When can a scheme X over E be descended to
F, that is, is there a scheme Y over F such that X =~ Y Xg,..(r) Spec(E)? Grothendieck explored the
analogy with the classical case, where a topological space or a differentiable manifold can be constructed
by glueing together open subsets via transition functions which satisfy a compatibility condition on triple
intersections. A "descent datum” is an analogue of this for schemes.

Throughout F is a field, and E/ F is usually a Galois field extension. We may assume E / F to be finite.

Definition 3.7.1 Let E be a field and F C E be a subfield such that E/ F is a finite Galois extension. Let
p1 : X1 — Spec(E) and py : Xo — Spec(F) be two E-schemes. Then, by a morphism from py to
pa that is twisted by o € Gal(E/F) we will mean a morphism ¢ : X1 — X of schemes such that the
diagram

¢

X1 > X2
]
Spec(E) » Spec(E)

commutes. Here o : Spec(E) — Spec(E) denotes the morphism of affine schemes induced by
o ':E—E.
The next theorem gives some equivalences of categories.

Theorem 3.7.1 Let E/F be a finite Galois extension of fields and G := Gal(E/F) be its Galois group.
Then :
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i) There are the following equivalences of categories

E — wvector spaces with a
— operation from the left where each
o E G operates o — linearly
E — algebras
with a G-operation from the left
where each o € G operates o — linearly

{ F-vector spaces } —

{F-algebras } —

where each o € G operates o — linearly
commutative E-algebras

with a G-operation from the left

where each o € G operates o — linearly
commutative E-algebras with unit

with a G-operation from the left

where each o € G operates o — linearly
A — AQ®rE

{ commutative F-algebras } —

{ commutative F-algebras with unit } —

E — algebras
{ central simple algebras over F } ~ —» with a G-operation from the left

ii) here is the following equivalence of categories,

quasi-projective E-schemes

with a G-operation from the left
{ quasi-projective F-schemes } — by morphisms of F-schemes

where each o € G operates

by a morphism twisted by o

X — X Xspec(r) Spec(E)
iii) Let X be a F-scheme and r be a natural number. Then there are the following equivalences of
categories
[ quasi-coherent sheaves M )
on X X Spec(F) Spec(E)
{ quasi-coherent sheaves on X } — together with a system (ic)scc

of isomorphisms 1, : x; M — M satisfying
l’[ e} x?’{—(la') - Z(TT

| foreveryo,T€ G

( locally free sheaves of rank r on X

on X X spec(p) Spec(E)

together with a system(iy) e

of isomorphisms 1, : x; M — M satisfying
1t © x;k-(lo’) = loT

| foreveryo, T € G

F — M :=n1"F

AN

{ locally free sheaves of rankron X } —»

Here the morphisms in the categories are the obvious ones, i.e. those respecting all the extra struc-
tures 70 1 X X gpec(p) Spec(E) — Xis the canonical morphism and X : X X gpec(r) Spec(E) —
X Xgpec(r) Spec(E) denotes the morphism that is induced by ot : Spec(E) — Spec(E).

Proof. See [14, Theorem 2.2, p.7].
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Proposition 3.7.1 (Galois descent-geometric version) Let E/F be a finite Galois extension of fields and
G := Gal(E/F) its Galois group Further, let Y be a quasi-projective E-scheme together with an operation
of G from the left by twisted morphisms, i.e., such that the diagrams

$o

Y > Y
I
Spec(E) z » Spec(E)

commute, where o : Spec(E) — Spec(E). Then there exists a quasi-projective E-scheme X such that
there is an isomorphism of E-schemes

X Xspec(r) Spec(E) —f~> Y

where X X gpec(r) Spec(E) is equipped with the G-operation induced by the one on Spec L and f is
compatible with the operation of G.

Proof. See [14, Proposition 2.5, p.9].

Proposition 3.7.2 (Galois descent for quasi-coherent sheaves) Let E/F be a finite Galois extension
of fields and G := Gal(E/F) be its Galois group. Further, let X be a F-scheme, 7T : X Xgpec(p)
Spec(E) — X the canonical morphism and xg : X X gpec(p) Spec(E) —> X Xgpe(r) Spec(E) be the
morphism induced by o* : Spec(E) — Spec(E).

Let M be a quasi-coherent sheaf over X X g,0.(r) Spec(E) together with a system (i5)scc of isomor-
phism 1, : x; M — M that are compatible in the sense that for each o, T € G there is the relation
ZT o xﬁ;—(lg') — ZU'T'

Then there exists a quasi-coherent sheaf F over X such that there is an isomorphism

TF —Y oM

under which the canonical isomorphism iy : x**F = (nx,)*F : m*F = nm'F — mw'n*F is
identified with 1, fr each o, i.e. the diagrams

x;(b)
xhtt F ————— xiM

ial ll

o F —Lt s M

commute.
Proof. See [14, Proposition 2.6, p.10].

Remark 3.7.1 Note there is a Galois descent-algebraic version. We refer the reader to [14, Proposition
2.3,p.8l

The next proposition gives the import result of Galois descent for homomorphisms.

Proposition 3.7.3 Let E/F be a finite Galois extension of fields and G := Gal(E/F) be its Galois
group. Then it is equivalent.

1) to give a homomorphism f : V. — V' of F-vector spaces (of algebras over F, of central simple
algebras over F, of commutative F-algebras, of commutative F-algebras with unit, - - - ).
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2) to give a homomorphism fr : V xp E — V' @ E of E-vector spaces (of algebras over E, of central
simple algebras over E, of commutative E-algebras, of commutative E-algebras with unit,- - -)
which is compatible with the G-operations, i.e., such that for each o € G the diagram

VeprE — 1V @rE

al la
VeprE — 1V @rE
commutes.

Proof. See [14, Proposition 2.7, p.11].

Proposition 3.7.4 (Galois descent for morphisms of schemes) Let E/F be a finite Galois extension of
fields and G := Gal(E/F) be its Galois group. Then it is equivalent.

i) to give a morphism of F-schemes ¢ : X — X .

ii) to give a morphism of E-schemes g : X Xgpec(r) Spec(E) — X' X spec(F) Spec(E) which is
compatible with the G-operations, i.e., such that for each o € G the diagram

P /
X X Spec(F) SPEC(E) —E> X X Spec(F) SPeC(E)

al e

P ’
X X Spec(F) Spec(E) R X X Spec(F) SpeC(E)

commutes.
Proof. See [14, Proposition 2.8, p.12].

Remark 3.7.2 Note that there is a Galois descent for morphisms of quasi-coherent sheaves, we refer the
reader to [14, Proposition 2.9, p.12].

We conclude this section, by giving the following theorem.

Theorem 3.7.2 (A.Grothendieck and ]. Dieudonné) Let E/F be a finite field extension and X be a F-
scheme such that X X gpec(ry Spec(E) is

i) reduced.
ii) irreducible.
iii) compact.
iv) locally of finite type.
v) of finite type.
vi) locally Noetherian.
vii) Noetherian.
viii) proper.

ix) quasi-projective.
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x) projective.
or
xi) regular.

Then X admits the same property.

Proof. See[14, Lemma 2.12, p.14].

3.8 Central simple algebras and non-abelian cohomology

In this section, we will give the relation between Central simple algebras and non-abelian cohomology.

Lemma 3.8.1 (Theorem of Skolem-Noether) Let R be a commutative ring with unit. Then GLy,(R)
operates on My, (R) by conjugation,
(g/m) —> gmg™".
If R = F is a field then this defines an isomorphism
PGL,(F) := GL,(F)/F* — Autp(M,(F)).
Proof. See [14, Lemma 3.4, p.34].

Definition 3.8.1 Let n be a natural number.

i) If F is a field then we will denote by Azl the set of all isomorphy classes of central simple algebras
A of dimension n® over F.

ii) Let E/F be a field extension. Then Az’ will denote the set of all isomorphy classes of central sim-
ple algebras A which are of dimension n? over F and split over E. Obviously, Azl := Ug ¢ AzL/E

Theorem 3.8.1 Let E/F be a finite Galois extension of fields, G := Gal(E/F) its Galois group and n
be a natural number. Then there is a natural bijection of pointed sets.

a=at't. AE'F — HYG,PGL,(E))
A — aa

Proof. See [14, Theorem 3.6, p.20].

Proposition 3.8.1 Let E/F be a finite Galois extension of fields and n be a natural number

1) Let K be a field extension of E such that K/F is Galois again. Then the following diagram of
morphisms of pointed sets commutes,

E/F

AZE/F o s HY(Gal(E/F), PGLy(E))
inf ((;;leg//zf;
K/F ay’* o
AZE s H'(Gal(K/F), PGLy(K))
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2) Let K be an intermediate field of the extension E/F. Then the following diagram of morphisms of
pointed sets commutes,

E/F
AzE/F o » HY(Gal(E/F), PGL,(E))
inf a5
E/K uE/K
AzE/ ! s H'(Gal(E/K), PGL,(E))

Proof. See [14, Lemma 3.7, p.21].
Corollary 3.8.1 Let F be a field and n be a natural number. Then there is a unique natural bijection
a=a,: Azl — H'(Gal(F**P /F), PGL,(F*%")).

E/F
such that at =a
n|AzE/F n

Proposition 3.8.2 Let F be a field and m and n be natural numbers. Then the diagram

Azf o » H'(Gal(F%? /F), PGLy(F5P))
AHMMA)h l(izm»
F
AzE T » H(Gal(F°P /F), PGLy (F%))

commutes where (il,,,)« is the map induced by the block-diagonal embedding

in,: PGL,(F) — PGLyy, (F5°P)
E O 0
_ 0 E 0
E —
0O 0 E

Proof. See [14, Proposition 3.9, p.22].
Remark 3.8.1 The proposition above shows

Br(F) ~ lim H'(Gal(F**" / F), PGLy(F*7)).

n

3.9 Severi-Brauer varieties

In the final section of this chapter, we arrive at the objects we are most interested in studying; Severi-
Brauer varieties. We focus here especially in the relation between these varieties and central simple
algebras.

Definition 3.9.1 Let F be a field. A scheme X over F is called a Brauer-Severi variety if there exists a
finite, separable field extension E/F such that X is isomorphic to a projective space Pt

A field extension E of F admitting the property that X xp E ~ P} for some n € IN is said to be a
splitting field for X. In this case one says X splits over E.
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Notation. Xp:= X xp E := X Xg(r) Spec(E).
Remark 3.9.1 Severi-Brauer varieties are twisted forms of projective space.

We now come to the fundamental result about Severi—Brauer varieties.
Proposition 3.9.1 Let X be a Brauer-Severi variety over a field F. Then
1) X is a variety, i.e. a reduced and irreducible scheme.
2) X is projective and reqular.
3) X is geometrically integral.
4) One hasT(X,Ox) = F.
5) F is algebraically closed in the function field F(X).

Remark 3.9.2 For 3) Recall that for X be a scheme over the field F. We say X is geometrically integral
over F if the scheme XF is integral for every field extension E of F.

Proof. See [14, Proposition 4.2, p.23].

Theorem 3.9.1 (Chitelet) Let X be a Severi—Brauer variety of dimension n — 1 over the field F. The
following are equivalent :

i) X is isomorphic to projective space ]ngl over F.
ii) X is birationally isomorphic to projective space ]Pg_1 over F.
iii) X has a F-rational point.

iv) X contains a twisted-linear subvariety'' Y of codimension 1.
Proof. See [10, Theorem 5.1.3, p.115].

Passing to the next paragraph, we will gives the relation between Severi-Brauer varieties and non-abelian
H'.

Severi-Brauer varieties and non-abelian H'

Proposition 3.9.2 Let R be a commutative ring with unit.

1) Then GL,(R) operates on 11’?{1 by morphisms of R-schemes as follows : A € GL,(R) gives rise
to the morphism given by the graded automorphism

®: R[Ty,--,Tyon] —  R[To,...,Tp_1]
Ty, Tuo1) — F((To,..., Tuq) - AY)

of the coordinate ring.

2) If R = E is a field then this induces an isomorphism

PGLy(E) ———— Autp_ sehemes (]P;]Z"_l)

""We say that a closed subvariety Y — X defined over F is a twisted-linear subvariety of X if Y is a Severi-Brauer variety
and moreover over F the inclusion Yg C Xz becomes isomorphic to the inclusion of a linear subvariety ]P%_l.
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Proof. See [14, Lemma 4.3, p.24].

Definition 3.9.2 Let m be natural number.

i) If F is a field then we will denote by BSY, the set of all isomorphy classes of Brauer-Severi varieties
X of dimension m over F.

ii) Let E/F be a field extension. Then BSL/E will denote the set of all isomorphy classes of Severi-
Brauer varieties X over F which are of dimension m and split over E. Obviously, BSL, :=

Ue/F BSE/E,

Theorem 3.9.2 Let E/F be a finite Galois extension, G := Gal(E/F) its Galois group and m be a
natural number. Then there exists a natural bijection of pointed sets

B=pE/ . BSE'E — HY(G,PGLu(E))

m—1
X — ,BX

Proof. See [14, Theorem 4.5, p.25].
Lemma 3.9.1 Let E/F be a finite Galois extension of fields and m be a natural number.

i) Let E be a field extension of E such that E' /F is Galois again. Then the following diagram of
morphisms of pointed sets commutes

E/F
BSE/F P » H'(Gal(E/F), PGLy,(E))
infea(e/ )
/ BE/F , ,
BSE /F L s H'(Gal(E /F),PGLy(E"))

ii) Let K be an intermediate field of the extension E/F. Then the following diagram of morphisms of
pointed sets commutes

E/F
sty Spec(E) infGaE D
IBE/K
BS’:;;/_K1 m—1 » H'(Gal(E/K), PGLy,(E))

Proof. See [14, Lemma 4.6, p.26].
Corollary 3.9.1 Let F be a field and m be a natural number. Then there is a natural bijection

B=pBE/E . BSE/'E s HY(Gal(F*P/F), PGLy (F*P))

m—1
X — [BX

Proposition 3.9.3 Let m be a natural number. If X is a Severi-Brauer variety of dimension m over a
field F and X (F) # @ then, necessarily, X ~ P}
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Proof. See [25, Exercises 1 (Chatelet), p. 168].

Proposition 3.9.4 Let E/F be a finite Galois extension of fields, G := Gal(E/F) its Galois group and
m € IN. Then H'(G,GLy,(E)) = 0.

Proof. See [14, Lemma 4.10, p.27].

Definition 3.9.3 Let F be a field, m a natural number and X be a Brauer-Severi variety of dimension
m. Then a linear subspace of X is a closed subvariety Y C X such that Y Xgpec(p) Spec(F*F) C

X X spec(r) Spec(F*°F) =~ Py is a linear subspace of the projective space. This property is independent
of the isomorphism chosen.

Theorem 3.9.3 (F. Chitelet, M. Artin) Let F be a field, m and d be natural numbers, X be a Severi-
Brauer variety of dimension m and Y a linear subspace of dimension d. Then the natural bound-
ary maps send the cohomology classes BL,(X) € HY(Gal(F*P/F),PGLy11(F%?)) and BL(Y) €
HY(Gal(F? /F), PGLy,1(F*F)) to one the same class in the cohomological Brauer group H*(Gal(F°F / F), (FsF

Proof. See [14, Proposition 4.13, p.28].
The next paragraph gives the connection between Central simple algebras and Severi-Brauer varieties.

Central simple algebras and Severi-Brauer varieties

Theorem 3.9.4 Let A a central simple algebra over F of dimension n?

i) Then there exists a Severi-Brauer variety X 4 of dimension n — 1 over F satisfying

(+) If E/F is a finite Galois extension being a splitting field for A then is a splitting field for X4,
too, and there is one and the same cohomology class

aa = Bx, € H'(Gal(E/F), PGl,(E)).
associated with A and X 4.
(+) determines X 4 uniquely up to isomorphism of F-schemes.
ii) The assignment A — X 4 admits the following properties.
a) It is compatible with extensions E / F of the base field, i.e
XawrE = XA X spec(F) Spec(E).
b) E/F isa splitting field for A if and only if E/F is a splitting field for X 4.
Proposition 3.9.5 1) Let F be a field and n a natural number. Then X induces a bijection
XL Azl — BSE |
2) Let E/F be a field extension. Then X induces a bijection

XE/F . AZE/F . BSE/T
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3) These mappings are compatible with extensions of the base field, i.e., the diagram

Xy

Azl » BSE |
®pE XSpec(F)speC(E)
XE
Az . » BSE |

commutes for every field extension E/F.
Proof. See [14, Corollary 5.3, p.30].

Proposition 3.9.6 Let F be a field, n be a natural number and A a central simple algebra of dimension
n? over F. Then there is an isomorphism

XA AutF(A) — Authschemes(XA)'
Proof. See [14, Proposition 5.5, p.30].

Theorem 3.9.5 Let F be a field, n and d be natural numbers, and A be a central simple algebra of
dimension n? over F. Then the Severi-Brauer variety X 4 associated with A admits a linear subspace of
dimension d if and only ifd < n —1and d = —1[ind(A)].

Proof. See [14, Proposition 5.6, p.31].
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