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Introduction

The purpose of the present work is to present how algebraic varieties offer a bridge
connecting different areas in mathematics. Especially, we are interested here in making
clear how ideas (and even more, theories) are converted from an algebraic (resp., number
field) aspect to a purely geometric one. We also, indicate -sometimes-how reverse feedbacks
are gained from the introduction of geometric language in the study of specific topics in al-
gebra and number field theories.

This thesis is written -mostly- in a self contained manner and is designated to intro-
duce a non-specialist reader in algebraic geometry to this mathematical world. For this end,
we present in this manuscript many necessary backgrounds from various algebraic and geo-
metric areas, and we give -as possible- detailed proofs for the results contained here.

Roughly speaking, the introduction of algebraic varieties in mathematics can be con-
sidered as an attempt to combine tools, objects and arguments from algebra (at first commu-
tative algebra) and some corresponding topological spaces defined in a manner shaped to fit
with what existed in differential manifold theory. As will be seen in more details through-
out the first chapter, classical affine varieties are defined by means of polynomial functions
with coefficients in a base field preferably taken to be algebraically closed. Precisely, they
are the vanishing locus of families of polynomials in a finite Cartesian product of this base
field. Some authors -as we will do in this work- prefer to add the extra condition that they are
‘irreducible’ with respect to Zariski topology. Taking (coordinates) algebras of these (affine)
varieties, allows then to establish a nice correspondence with finitely generated domains
over the base field. This in fact generalizes to give an equivalence of categories between the
category of ‘non necessary irreducible’ affine varieties and the category of ‘reduced’ finitely
generated algebras over this field. As in differential geometry, projective varieties are de-
fined similarly by means of homogeneous polynomials, and special open covers of them are
given by affine varieties, making it possible to lift properties from the affine case to the pro-
jective one.

The importance of the above equivalence of categories arises from the fact that for
(some) algebraic objects, we can benefit from all topological and geometric properties of the
corresponding varieties. In this sense, many purely geometric notions are connected to some
algebraic ones, e.g., in the affine case, the dimension of a variety (i.e., the topological di-
mension of its underlying space) coincides with the (Krull) dimension of the corresponding
affine coordinate algebra.

In contrast with differential setting, algebraic varieties are not Hausdorff in general,
and so an algebraic group for example -defined in the same manner as Lie group in differ-
ential geometry- is not a topological group. Nevertheless, a separation notion does exist for
algebraic varieties and any morphism of affine schemes turns to be separated. Moreover, the
idea of working locally on a variety, especially using germs of regular functions, is a main
idea that remains valid in this algebraic context. Besides, many notions inspired from dif-
ferential manifolds like closed and open immersions are very helpful in the study of these
algebraic varieties. We have also a notion of (algebraic) tangent space which allows benefit-
ing from connections with Lie theory when dealing for example with algebraic groups.

In modern algebraic geometry, the use of sheaf theory made it possible to work on a
general commutative base ring (not only on a base field) and affine varieties, as will be ex-
plained in the second chapter, are defined by means of the spectrum of the considered ring.
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For non affine varieties like projective ones, scheme theory developed essentially in Alexan-
der’s pioneer work and that of his collaborators, made it possible to generalize arbitrary
varieties to the context of (commutative) rings. The idea of schemes consists in some gluing
of spectra of many (commutative) rings along open subsets. This theory heavily relies on cat-
egory language and the landscape appears very difficult without sufficient understanding of
classical varieties. Schemes theory at its earlier beginning served to settle many important
conjectures like Weil conjectures and Mordell conjecture. It becomes today an important
component in many mathematical areas and continues to intervene in solving many hard
problems. Indeed, many algebraic results still continue to have only geometric proofs.
As in algebraic topology and also in differential geometry, a notion of (algebraic) vector bun-
dles was defined and used to build Grothendieck groups (of varieties). More generally, all
K-theory groups are defined by using these algebraic bundles in the same model as for com-
mutative rings. Indeed, in the language of modules over schemes -see the second chapter-
and up to an equivalence of categories, algebraic vector bundles are exactly coherent mod-
ules over (Noetherian) schemes. Also, when dealing with an affine scheme, they correspond
categorically - under some canonical equivalence- to finitely generated projective modules
over the base ring. Besides this approach relating schemes to K-groups, many properties of
schemes can be described by using adequate cohomological complexes.

In this manuscript we give two applications of algebraic geometry showing the above
said interplay between algebra, number field theory and varieties. The first one concerns
the notion of divisors in algebraic geometry and the second one deals with Severi-Brauer
varieties.

The notion of divisors for varieties is part of intersection theory in algebraic geometry.
It can be considered as an extension of the well known Kronecker’s divisors in algebraic
number field theory. Historically, it is known that Kronecker’s divisors were built on a sim-
ple but fascinating idea which consists in determining greatest common divisors inside the
polynomial algebra (in one indeterminate) over the rational field. The main tool used for this
end was an easy notion of the ‘content’ of a polynomial which is the greatest common divisor
of its coefficients in the case of a polynomial with integer coefficients. Indeed, at that time
such simple notions were often the starting point of flourishing theories. Hermann Weyl
developed then an axiomatization of divisors built on the same principal of Dedekind’s ele-
gant ‘ideal theory’ to give information on prime factorizations. A divisor became then some
well defined ideal and a multiplicative group was then derived from nonzero divisors. This
group was then related to other groups defined in Dedekind’s theory. Moreover, besides
working over a rational field, divisors were extended to be defined over more base fields,
e.g., number fields. The study of divisors benefited from several algebraic and number field
tools, e.g., Diddekind’s discriminants, Picard group.., but a great raise was due to the use of
valuation theory, where divisors took another aspect based on the notion of ‘places’, which
are closed to valuation rings. Plainly, Dedekind’s and valuation approaches had opened new
perspectives in the study of divisors; nevertheless, it is worthy to mention that the ancient
(and almost forgotten) theory of ‘contents’ preserves some advantages when compared with
these new approaches (e.g., it is independent of the considered base field which is not the
case for Dedekind’s approach).

The use of valuation language in the study of divisors, allowed for algebraic number
fields at first - then for varieties - developing Riemann-Roch theory which is now widely
applied in different areas of mathematics, especially in coding theory and cryptography.

Divisors in algebraic geometry were first defined on (classical) curves, since (special)
discrete valuations exist on the function field of such a curve and local rings of nonsingular
curve’s points are regular. The theory was then extended to codimension one varieties in
schemes theory and gave rise to Chow groups, where a general intersection theory was built
from algebraic cycles. A (Weil) divisor is then a cycle of codimension one. Unfortunately, we
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did not deal in this manuscript with this more general (intersection) theory for it would need
more special background. Let’s finally mention that divisors have close connection with vec-
tor bundles. Indeed, there is a one-to-one correspondence between equivalence classes of
(Weil) divisors and isomorphism classes of (algebraic) line bundles.

The other example illustrating the usefulness of varieties that we treat in this manuscript
concerns Severi-Brauer varieties which are widely applied in studying central simple alge-
bras. They appeared in François Châtelet’s paper [7] but historically it is announced that
they appeared before and are due in part to Severi (see [2]). As will be explained in the third
chapter, to every central simple algebra, one can attach a corresponding Severi-Brauer vari-
ety and this last one encodes information on splitting fields of such algebra. Indeed, Amitsur
used in [1] the function field of this attached variety and defined a generic splitting field for
the considered algebra. Since then, Severi-Brauer varieties became very useful in the study
of Brauer groups, groups that classify central simple algebras over some fixed fields.

Throughout different discussions in this manuscript, we don’t pretend originality, and we
refer the reader to a list of references at the end.

In an attempt to achieve our described aim in this work, we organize the content of this
manuscript as follows.

In the first chapter, which consists of two parts, we introduce in the first part the neces-
sary background of (classical) affine and projective varieties. In particular, we define Zariski
topology for such varieties. We define regular functions, morphisms and rational maps of
varieties. We describe how a coordinate ring is associated to an affine variety and how equiv-
alence of categories relate both sides. We show how a projective variety is covered by affine
opens. We prove that the dimension of an affine variety coincides with the (Krull) dimension
of its corresponding coordinate algebra. We define tangent spaces and study some elemen-
tary properties of nonsingular points. Also, we define the notion of normal varieties and
show that a nonsingular variety is necessarily normal. In the second part of this chapter, we
introduce divisors in terms of places and study some of their properties on (classical) curves.
We give in particular a detailed survey on Riemann-Roch theory on these curves.

The second chapter, consisting of three parts deals with the theory of schemes. The first
part lays out the basic definitions and properties of sheaf theory. The second one discusses
schemes, morphisms between schemes, fiber products and dimension of schemes. It deals
also with local and global properties of schemes. This includes the notions of Noetherian,
irreducible, reduced, integral, regular, normal, separated, proper, projective schemes. We
also study modules over schemes. The third part deals with cohomological interpretations
in scheme theory and introduce Weil and Cartier divisors (defined now in terms of schemes).
For a full treatment of sheaves, schemes, Weil divisors and Cartier divisors, we refer to [9],
[17] and [12].

The third chapter consists of two parts. In the first one, we give a brief survey on simple
and semisimple modules, on central simple algebras and prove in particular fundamental
theorems like Wedderburn’s theorem, the double centralizer theorem and Skolem-Noether
theorem. We show how to build and we study Brauer group of a field and show how crossed
products relate this group to a second Galois cohomology group. For more details on cen-
tral simple algebras, we refer to [15], [10] and [21]. The second part, concerns Severi-Brauer
varieties and discusses some of their properties and the interplay between these varieties,
central simple algebras and some cohomological interpretations.



vi

Notation and terminology

k a field
k[T1, . . . , Tn] The (commutative) k-algebra of polynomials in n indeterminates with coefficients in k.

An The affine space of dimension n over k.
Pn The projective space of dimension n over k

Z, Q, R, C The ring of integers, rational numbers, real numbers, complex numbers.
R a commutative ring with identity element.

UFD Unique factorization domain.
PID Principal ideal domain.
DVR Discrete valuation ring.
Z(S) The set of common zeros of the polynomials in S.
I(X) The ideal of a set X.
k[X] The coordinate ring of an algebraic set.
O(X) The set of all regular functions on a variety X (the ring of regular functions on X)
var(k) The category of varieties over k.
Ox The local ring of X at x, also called the ring of germs of regular functions at x.
TxX The tangent space to an algebraic set X at x.

Derx(k[X]) The set of derivations of k[X] at x.
RF(X,Y) The set of all rational functions from X to Y.
T Ak The category of spaces of functions over k.

V∨, Hom(V, k) The dual space of V.
Rp localization at p.

Div(E) The group of divisors of a function field E/k.
L(D) The Riemann-Roch Space.
l(D) dimk(L(D)).
AE The set of all adèles of E/k.
PE The set of all places P of E/k.
T op The category of topological spaces.
F (pre)sheaf on a topological space.
F † Sheafification of presheaf F .
Fx The stalk of a presheaf F at a point x.

AbShX The category of abelian sheaves.
PreShX The category of presheaves on the topological space X.

f∗F The pushforward of F .
f−1G The pullback sheaf.
C a category.

Spec(R) The set of all prime ideals of R.
RS The category of ringed spaces.
ShX The category of sheaves on X.
Sch The category of schemes.

ASch The category of affine schemes.
OSpec The Structure Sheaf on Spec(R).
QCohOX

The category of quasi-coherent OX-modules.
Coh(OX) The category of coherent OX-modules.

S(M) The set for all submodules of M.
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Notation and terminology

Cadiv(X) The group of Cartier divisors.
Cadiv+(X) The set of effective Cartier divisors.

CaCl(X) := CaDiv(X)/ ∼ Cartier divisors class group.
Div(X) The group of Weil divisors.
Div0(X) The principal divisors.

Cl(X) := Div(X)/Div0(X) Weil class group of X
CSA(F) The class of all central simple algebras over F.
Br(F) The Brauer group of F.

Br(E/F) The relative Brauer group of the field extension E ⊇ F.
G := Gal(E/F) The Galois group of E/F.

(E, G, a) The crossed product algebra over F determined by E and a.
A = (E/F, σ, β) The cyclic algebra over F determined by E and β.
AbGrp The category of abelian groups

H0(G, M) The zeroth cohomology set of G with coefficients in M.
H1(G, M) The first cohomology set of G with coefficients in M.

AzF
n The set of all isomorphy classes of central simple algebras

A of dimension n2 over F.

AzE/F
n The set of all isomorphy classes of central simple algebras

A which are of dimension n2 over F and split over E.
BSF

m The set of all isomorphy classes of Severi-Brauer varieties
X of dimension m over F.

BSE/F
m The set of all isomorphy classes of Severi-Brauer varieties

X of dimension m over F.
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Chapter 1

Introduction to the Geometry of Affine and
Projective Spaces

In Algebraic Geometry, we study geometric objects - varieties - that are defined by polynomial equations.
One fascinating aspect of this is that we can do geometry over arbitrary fields, however we can gain a
lot of geometric intuition from looking at algebraically closed fields k.* The theory developed here is often
described as the commutative part of algebraic geometry for it relies heavily on concepts and results from
commutative algebra. In particular, unless otherwise mentioned, all considered algebras in this chapter
-as well as in the second one- are assumed to be commutative. More details about the content of this
chapter were given in the general introduction of this manuscript and we see no interest to repeat this
description here.

1.1 Affine and projective varieties

In this section, we will define the basic objects of our study : Algebraic sets in affine space of dimension
an arbitrary integer n An = kn. We define also affine and projective varieties and give some of their first
properties.
Throughout the rest, we let k[T1, . . . , Tn] denote the (commutative) k-algebra of polynomials in n in-
determinates T1, . . . , Tn, with coefficients in k. A polynomial f ∈ k[T1, . . . , Tn] defines a function
f̃ : An −→ k, given by (a1, . . . , an) 7−→ f (a1, . . . , an). The k-valued functions on An form a k-
algebra via pointwise addition and multiplication.
The map

φ : k[T1, . . . , Tn] −→ { functions, An −→ k}
f 7−→ f̃

is a k-algebra homomorphism.

1.1.1 Affine varieties

As seen aboven the affine space of dimension n over k is simply the set kn. It will be denoted by An
k

or simply by An. The elements (also called points) An are then n-uples (a1, . . . , an), where ai ∈ k for
i = 1, . . . , n. Algebraic sets in the affine space are defined by means of subsets S ⊆ k[T1, . . . , Tn]. For
such a subset, we let by (S) be the ideal of k[T1, . . . , Tn] generated by S.

*A field k is algebraically closed if every non-constant polynomial (on one indeterminate and with coefficients in k) has a
root in k. It follows that every polynomial of degree n can be uniquely factorized (up to permutation of the factors) as

P = c
n

∏
i=1

(X− ai)

where c and the ai are elements of k.
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Definition 1.1.1 Let S ⊆ k[T1, . . . , Tn] be any subset. The set

Z(S) := {(a1, . . . , an) ∈ An | f (a1, . . . , an) = 0, for all f (T1, . . . , Tn) ∈ S}

is called the algebraic set (of An) defined by S.

Remarks 1.1.1 i) It is not hard to see that if the set of polynomials is larger, the set of common zeros
is smaller, i.e.,

S ⊆ S
′
=⇒ Z(S

′
) ⊆ Z(S)

ii) If I is the ideal generated by the polynomials in S, then we have Z(I) = Z(S). So algebraic sets
can be defined Z(I) for ideals I ⊆ k[T1, . . . , Tn]. Recall that all ideals in k[T1, . . . , Tn] are finitely
generated by the Hilbert Basis Theorem.

Examples 1.1.1 1) Affine n-space itself is an algebraic set, since An = Z(0). Similarly, the empty
set ∅ = Z(1) is an algebraic set.

2) Any single point in An is an algebraic set. Indeed, we have {(a1, . . . , an)} = Z(T1− a1, . . . , Tn−
an).

3) The special linear group, SL(n, k) which is the set of all matrices A = (aij)1≤i,j≤n with entries in

k and such that det(A) = 1, can be viewed as a subset of An2
by the correspondence

(aij) 7−→ (a11, . . . , a1n, . . . , a21, . . . , a2n, . . . , an1, . . . , ann)

This is an algebraic set because the determinant of a matrix is a polynomial function of the matrix-

elements, so that SL(n, k) is the set of zeros of the polynomial, det(A)− 1 for A ∈ An2
.

Here are some basic properties of algebraic sets and the ideals that generate them :

Proposition 1.1.1 Let I, J be ideals of k[T1, . . . , Tn]. Then

1) I ⊆ J implies Z(J) ⊆ Z(I).

2) Z(I J) = Z(I ∩ J) = Z(I) ∪ Z(J).

3) Z(∑ Ii) =
⋂

Z(Ii).

Proof. 1) For a ∈ Z(J), we have f (a) = 0, for all f ∈ J, so in particular for all f ∈ I. So a ∈ Z(I).

2) Plainly, we have I J ⊆ I ∩ J ⊆ I, J, so Z(I ∩ J) ⊆ Z(I) ∪ Z(J). For the reserve inclusions, let
a /∈ Z(I) ∪ Z(J), then there exists f ∈ I and g ∈ J such that f (a) ̸= 0 and g(a) ̸= 0. Then
f g(a) ̸= 0, so a /∈ Z(I J).

3) For all j, we have Ij ⊆ ∑ Ij then Z(∑ Ij) ⊆ Z(Ii), hence Z(∑ Ii) ⊆ ∩Z(Ii). Conversely, for
a ∈ ⋂

Z(Ii), we have a ∈ Z(Ii), for all i. For each f ∈ ∑ Ii, we can write f = ∑
r
k=1 fk, where

fk ∈ Ik, k = 1, . . . , r. So, f (a) = ∑
r
k=1 fk(a) = 0, therefore a ∈ Z(∑ Ii)

It follows that the algebraic sets in An satisfy the axioms of the closed sets in a topology.

Definition 1.1.2 The Zariski topology on An is the topology for which the closed sets are algebraic sets
of An.

Notation. For a subset X ⊆ An, define I(X) := { f ∈ k[T1, . . . , Tn] | f (x) = 0, ∀x ∈ X}. The set
I(X) is an ideal in k[T1, . . . , Tn].
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Example 1.1.1 Let a = (a1, . . . , an) ∈ An be a point, then the ideal of the one-point set {a} is I(a) :=
I({a}) = (T1 − a1, . . . , Tn − an).

We have now constructed operations

{Algebraic sets in An
}
←→ {ideals in k[T1, . . . , Tn]}

X −→ I(X)
Z(J) ←− J

and should check whether they actually give a bijective correspondence between ideals of k[T1, . . . , Tn]
and algebraic sets.

Lemma 1.1.1 Let S and S
′

be a subsets of k[T1, . . . , Tn] and let X and X
′

be a subsets of An

i) If X ⊆ X
′

then I(X
′
) ⊆ I(X).

ii) X ⊆ Z(I(X)) and S ⊆ I(Z(S)).

iii) The Zariski closure of X is exactly Z(I(X)). So, if X is an algebraic set, then Z(I(X)) = X.

iv) I(X ∪ X
′
) = I(X) ∩ I(X

′
).

Proof. i) Clear.

ii) Clear.

iii) By ii), we have X ⊆ Z(I(X)) and so X ⊆ Z(I(X)). Conversely, let W ⊆ An be an algebraic
set containing X and write W = Z(S) for some S ⊆ k [T1, . . . , Tn]. Then, again by ii), we have
S ⊆ I(Z(S)) = I(W) ⊆ I(X) and so Z(I(X)) ⊆ Z(S) = W, as required.

iv) We have X, X
′ ⊆ X ∪ X

′
, so by i) we get I(X ∪ X

′
) ⊆ I(X) ∩ I(X

′
). Conversely for f ∈

I(X) ∩ I(X
′
), we have f (x) = 0, for all x ∈ X ∪ X

′
. So f ∈ I(X ∪ X

′
).

By this lemma, the only thing left that would be needed for a bijective correspondence between ideals of
k[T1, . . . , Tn] and algebraic sets An would be I(Z(J)) ⊂ J for any ideal J (so that then I(Z(J)) = J by
part ii). Unfortunately, the following example shows that why this is not true in general.

Example 1.1.2 Let J be a nonzero ideal C[X]. As C[X] is a principal ideal domain and C is algebraically
closed, we have

J =
(
(X− b1)

m1 · · · (X− bn)
mn

)

for some n ∈ N, distinct elements b1, . . . , bn ∈ C, and m1, . . . , mn ∈ N. Obviously, the zero locus of
this ideal in A1 is Z(J) = {b1, . . . , bn} . The polynomials vanishing on this set are precisely those that
contain each factor X− bi for i = 1, . . . , n at least once, i. e. we have

I(Z(J)) = ((X− b1) · · · (X− bn)) ̸= J.

If at least one of the numbers m1, . . . , mn is greater than 1, this is a bigger ideal than J.

In what follows we will see that a bijective correspondence does however exist between algebraic sets in
An and some special ideals (radical ideals) of k[T1, . . . , Tn].

Definition 1.1.3 Let R be a commutative ring and let J ⊆ R be an ideal. Then the set of a ∈ R with the
property that am ∈ J for some m > 0 is an ideal of R, called the radical of J and denoted rad(J). We say
that J is a radical ideal if rad(J) = J.
We say that the ring R is reduced if the zero ideal (0) is a radical ideal (in other words, if a ∈ R with
that am = 0, for some positive integer m, then a = 0).
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Lemma 1.1.2 If A and B are integral domains, with B integral over A, then B is a field if and only if A
is a field.

Proof. Let b ∈ B be a nonzero element. Since B is an integral over A, then we can write

bm + am−1bm−1 + . . . + a0 = 0 (1.1)

with m ∈ N a nonzero natural integer, ai ∈ A (1 ≤ i ≤ m). Moreover, Since A is integral domain, we
can suppose that a0 ̸= 0.
Suppose that A is a field, then a0 has an inverse in A. By (1.1), we have :

a0 = −(bm + am−1bm−1 + . . . + a1b)
= −(bm−1 + am−1bm−2 + . . . + a1)b

1 = −a−1
0 (bm−1 + am−1bm−2 + . . . + a1)b, which shows that b is a unit of B. Conversely, suppose B is

a field and r ∈ A. Then r−1 ∈ B and we can write r :

r−n + an−1r−(n−1) + . . . + a0 = 0

for some positive integer n and some elements ai ∈ A. If we multiply this equality by rn−1, we get

r−1 + an−1 + . . . + a0rn−1 = 0.

Hence r−1 = −(an−1 + ... + a0rn−1) ∈ A.

Theorem 1.1.1 Let A be a finitely generated algebra over k. If A is a field, then A is an algebraic
extension of k.

Proof. See [6, Lemma 9.1.2, p.454].

Corollary 1.1.1 (Hilbert’s Nullstellensatz) (weak form). Let k be an algebraically closed field. The
maximal ideals of k [T1, . . . , Tn] are precisely the ideals

I(a1, . . . , an) = (T1 − a1, T2 − a2, . . . , Tn − an)

for all points (a1, . . . , an) ∈ An.

Proof. Let m be a maximal ideal of k[T1, . . . , Tn] and A := k[T1,...,Tn]
m . Plainly, obvious that A is a

finitely generated algebra over k (generated by the elements Ti +m of A); moreover by theorem 1.1.1, A

is an algebraic field extension of k. Since k is algebraically closed, embedding ϕ : k −→ A(= k[T1,...,Tn]
m ),

a 7−→ a +m is an isomorphism (of fields). In particular there exists ai ∈ k such that Ti +m = ϕ(ai)
(for all 1 ≤ i ≤ n). This means that Ti − ai ∈ m, so the ideal (T1 − a1, . . . , Tn − an) is contained in m.
Conversely, for any f ∈ m considering f as a polynomial in T1 and taking the Euclidean division of f by
T1 − a1, we get f = f1(T1, . . . , Tn)(T1 − a1) + r(T2, . . . , Tn), where f1(T1, . . . , Tn), r(T2, . . . , Tn) ∈
k[T1, . . . , Tn], with deg r(T2, . . . , Tn) = 0 i.e., T1 not appearing in r(T2, . . . , Tn)
Once again, taking the Euclidean division of r(T2, . . . , Tn) by T2 − a2, we get

f = f1(T1, . . . , Tn)(T1 − a1) + f2(T2, . . . , Tn)(T2 − a2) + r3(T3 . . . , Tn)

Continuing in this way, we get

f = f1(T1, . . . , Tn)(T1 − a1) + . . . + fn(Tn)(Tn − an) + a.

We have Ti − ai ∈ m, so necessarily a = 0 (for a ∈ m and m is a maximal ideal of k[T1, . . . , Tn]).
Therefore f ∈ (T1 − a1, . . . , Tn − an). So m = (T1 − a1, T2 − a2, . . . , Tn − an).
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Corollary 1.1.2 Let k be k an algebraically closed field. For every proper ideal J in k [T1, . . . , Tn], there
is a point x ∈ Z(J).

Proof. Let J be a proper ideal in k [T1, . . . , Tn] J and let m be a maximal ideal of k[T1, . . . , Tn] containing
J. By corollary 1.1.1, we can write m = (T1 − a1, . . . , Tn − an). As J ⊆ m, we may conclude that
(a1, . . . , an) ∈ Z(J).

Theorem 1.1.2 (Hilbert’s Nullstellensatz). Let k be an algebraically closed field. Then for every ideal J
of K [T1, . . . , Tn] we have I(Z(J)) = rad(J)

Proof. Let f ∈ rad(J), then there is some positive integer n such that f n ∈ J, so f n vanishes on
Z(J), hence f vanishes on it too. Thus, I(Z(J)) ⊃ rad(J). For the reverse inclusion, let’s introduce
a new auxiliary indeterminate is to introduce a new auxiliary variable Tn+1. Let’s also consider some
g ∈ I(Z(J)) and let L be the ideal of the polynomial ring k [T1, . . . , Tn+1] given by

L = J · k[T1, . . . , Tn+1] + t(1− Tn+1 · g)

In geometric terms the zero-locus Z(L) ⊆ An+1 is the intersection of the the subset Z = Z(1 −
Tn+1, g) and the inverse image π−1(Z(J)) of Z(J) under the projection π : An+1 → An that forgets
the auxiliary coordinate Tn+1. This intersection is empty since obviously g does not vanish along Z,
but vanishes identically on π−1(Z(J)). The corollary 1.1.1 therefore gives that 1 ∈ L, and there are
polynomials fi in J and hi and h in k[T1, . . . , Tn+1] satisfying a relation like

1 =
m

∑
i=1

fi (T1, . . . , Tn) hi (T1, . . . , Tn+1) + h (1− Tn+1 · g)

We substitute Tn+1 = 1
g and multiply through by a sufficiently high power gN of g to obtain

gN = ∑ f (T1, . . . , Tn) Hi (T1, . . . , Tn)

where Hi (T1, . . . , Tn) = gN · hi

(
T1, . . . , Tn, g−1

)
. Hence g ∈ rad(J).

Hilbert’s Nullstellensatz† precisely describes the correspondence between algebra and geometry :

Corollary 1.1.3 Let k be an algebraically closed field.

i) The map J 7−→ Z(J) defines a one-to-one correspondence between the set of radical ideals in
k[T1, . . . , Tn] and the set of algebraic subsets of An. Its inverse is given by X 7→ I(X), for any
algebraic set in An i.e

{
algebraic sets

in An

}
I−→
Z←−

{
radical ideals in

k[T1, . . . , Tn]

}
. (1.2)

ii) There is a one-to-one correspondence

{ points of An} ←→ { maximal ideals of k[T1, . . . , Tn]}
p 7−→ mp

where mp := (T1 − p1, . . . , Tn − pn).

†Hilbert’s Nullstellensatz is a theorem that establishes a fundamental relationship between geometry and algebra. This
relationship is the basis of algebraic geometry, a branch of mathematics. It connects algebraic sets to ideals in polynomial
rings on algebraically closed fields. This relation was discovered by David Hilbert who proved the Nullstellensatz and several
other important related theorems named after him (such as Hilbert’s basic theorems).
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Proof. i) This follows from the fact that I(Z(J)) = J and Z(I(X)) = X, for every radical ideal J of
k[T1, . . . , Tn] and every algebraic set X in An.

ii) Let J be a maximal ideal of k[T1, . . . , Tn], then by corollary 1.1.1 there exists a1, ..., an ∈ k such
that J = (T1 − a1, . . . , Tn − an) = mp, hence J = mp, where p = (a1, ..., an).
Then prove that p 7−→ mp is a surjective map from An onto the set of maximal ideals of k[T1, . . . , Tn].
This map is also injective, indeed let p1 and p2 ∈ An, and suppose mp1

= mp2 , then Z(mp1
) =

Z(mp2), but we have Z(mpi
) = {pi} (1 ≤ i ≤ n. So, p1 = p2.

Corollary 1.1.4 The radical of an ideal of k [T1, . . . , Tn] is equal to the intersection of the maximal ideals
containing it.

Remark 1.1.1 The radical of an ideal is the intersections of all prime ideals that contain it (see corollary
1.1.4). The statement given here is true in the above context, where the basic field is algebraically closed.

Proof. Let a J ⊆ k[T1, . . . , Tn] be an ideal. Because maximal ideals are radical, every maximal ideal
containing J also contains rad(J), so

rad(J) ⊂
⋂

m⊃J

m

For each P = (a1, . . . , an) ∈ kn,mP = (T1 − a1, . . . , Tn − an) is a maximal ideal in k[T1, . . . , Tn] and

f ∈ mP ⇔ f (P) = 0

so
mP ⊃ J ⇔ P ∈ Z(J)

If f ∈ mP for all P ∈ Z(J), then f vanishes on Z(J), so f ∈ I(Z(J)) = rad(J). It follows that

rad(J) ⊇
⋂

P∈Z(J)

mP.

The coordinate ring of an algebraic set

The (affine) coordinate ring is one of the central concepts of algebraic geometry, particularly the theory
of affine algebraic sets. It is the ring of algebraic functions on an algebraic set.

Definition 1.1.4 Let X ⊂ An be an algebraic set. The quotient ring

k[X] := k [T1, . . . , Tn] /I(X)

is called the affine coordinate ring of X. It is a finitely generated algebra over k.
Two polynomials f and g on the indeterminates T1, . . . , Tn restrict to the same function on X precisely
when their difference f − g belongs to the ideal I(X). Hence it is natural to interpret elements in k[X]
as being polynomial functions from X into k, i.e., k-valued functions on X that are restrictions of a
polynomials.

Example 1.1.3 Let X ⊂ A2 be the hyperbola defined by XY− 1 = 0, so the coordinate ring is

k[X, Y]/(XY− 1) = k[X, X−1].

the ring of so-called Laurent polynomials.
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If X is an algebraic set of An and if Y is an algebraic set contained in X, then as previously seen,
we have I(X) ⊆ I(Y). Conversely if I(Y) contains I(X), then Y(= Z(I(Y)) ⊆ (Z(I(X) =)X.
Moreover, in such a case, I(Y)/I(X) is a radical ideal of k[X]. It follows that there is a one-to-one
correspondence between radical ideals in the coordinate ring k[X] and algebraic subsets contained in
X. If a is an ideal in k[X], we denote by Z(a) the corresponding closed subset of X, i.e., Z(a) :=
Z(ϕ−1(a)), where ϕ : k[T1, . . . , Tn] → k[X] is the canonical epimorphism. Also, for a subset Y of X,
we let IX(Y) := I(Y)/I(X)(∈ k[X]). In particular, for a point a = (a1, . . . , an) ∈ X, we let to be
IX(a). Note that if f , g are polynomials of k[T1, . . . , Tn] with f + I(X) = g + I(X) in k[X], then for
any x ∈ X, we have f (x) = g(x), so f + I(X) defines a k-valued function on X. One can then see that
ZX(Y) = { f + I(X) ∈ k[X] | f (y) = 0 for all y ∈ Y}.

Proposition 1.1.2 The coordinate ring, k[X] of an algebraic set X, has the following properties :

1) The points of X are in a one-to-one correspondence with the maximal ideals of k[X].

2) The closed sets of X are in a one-to-one correspondence with the radical ideals of k[X].

3) If f ∈ k[X] and p ∈ X with corresponding maximal ideal mp, then k[X]/mp is isomorphic (as a
field to k) and under this identification we have f (p) = π( f ), where π : k[X] → k[X]/mp is the
canonical epimorphism.

For the proof of the previous proposition we need some lemmas.

Lemma 1.1.3 Let R be a ring and let I of R be an ideal and let

p : R→ R/I

Then p induces a one-to-one correspondence between ideals of R/I and ideals J of R that contain I
addition, for any ideal I of R and any ideal K of R/I,

a) p(I) is prime or maximal in R/I if and only if I is prime or maximal in R.

b) p−1(K) is prime or maximal in R if and only if K is prime or maximal in R/I.

Proof. See [26, Lemma A.1.24, p.335].

We will also need to know the effect of multiple quotients :

Lemma 1.1.4 Let I ⊂ J be ideals of a ring R and let

i) f : R→ R/I

ii) g : R→ R/J and

iii) h : R/I → (R/I)/ f (J) be the canonical projections. Then (R/I)/ f (J) = R/J and the diagram

R R/I

R/J (R/I)/ f (J)

f

g h

commutes.

Proof. See [26, Lemma A.1.25, p.337].
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Proof. Let X ⊂ An be an algebraic set. If

π : k [T1, . . . , Tn]→ k[X]

is the canonical projection, and J ⊂ k[X] is an ideal, then lemma 1.1.3 implies that

J 7→ π−1(J)

is a bijection from the set of ideals of k[X] onto the set of ideals of k [T1, . . . , Tn] containing I(X). Prime,
and maximal ideals in k[X] correspond to prime, and maximal ideals in k [T1, . . . , Tn] containing I(X).
The fact that radical ideals are intersections of maximal ideals (see corollary 1.1.4) implies that this
correspondence respects radical ideals too. If p = (a1, . . . , an) ∈ X ⊂ An is a point, the maximal ideal
of functions in k [T1, . . . , Tn] that vanish at p is

L = (T1 − a1, . . . , Tn − an) ⊂ k [T1, . . . , Tn]

and this gives rise to the maximal ideal π(L) ⊂ k[X].
Clearly

Z(π−1(J)) = Z(J) ⊆ X

So J 7→ Z(J) is a bijection between the set of radical ideals in k[X] and the algebraic sets contained X.
To see that f (p) = π( f ), it suffices to apply lemma 1.1.4.

Irreducible topological spaces

The algebraic set X = {xy = 0} ⊂ A2 can be written as the union of the two coordinate axes X1 =
{x = 0} and X2 = {y = 0}, which are themselves algebraic sets. However, X1 and X2 cannot be
decomposed further into finite unions of smaller algebraic sets. We now want to generalize this idea. It
turns out that this can be done completely in the language of topological spaces. This has the advantage
that it applies to more general cases, i.e., open subsets of algebraic sets.

Definition 1.1.5 i) Topological space X is said to be reducible if it can be written as a union X =
X1 ∪ X2 , where X1 and X2 are (nonempty) closed subsets of X not equal to X. It is called irre-
ducible otherwise. A subset Y of X is irreducible if it is an irreducible topological space with respect
to the induced topology.

ii) A topological space X is called disconnected if it can be written as a disjoint union X = X1 ∪ X2

of (nonempty) closed subsets of X not equal to X. It is called connected otherwise.

Remark 1.1.2 Note that a Hausdoroff topological space is always reducible unless it consists of at most
one point. Thus the notion of irreducibility is relevant only for non-Hausdoroff spaces. Also one should
compare it with the notion of a connected space.

Proposition 1.1.3 Let X be a topological space. Then :

1) X is irreducible if and only if the intersection of any two nonempty open subsets is nonempty.

2) If X is irreducible, then every nonempty open subset U of X is dense and irreducible.

Proof. 1) Assume first that X is irreducible and let U1 and U2 be two open subsets of X. If U1 ∩
U2 = ∅, it would follow, when taking complements, that X = Uc

1 ∪Uc
2′ and X being irreducible,

we would have that Uc
i = X for either i = 1 or i = 2, hence Ui = ∅ for one of the i’s. To prove the

other implication, assume that X is expressed as a union X = X1 ∪ X2 with the Xi ’s being closed.
Then Xc

1 ∩ Xc
2 = ∅; hence either Xc

1 = ∅ or Xc
2 = ∅, and therefore either X1 = X or X2 = X.
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2) Let U be a nonempty open subset of X. We have X = U ∪ (X \U), where U is the closure of U
in X, since X is irreducible and X \U ̸= U, then U = X. Now that U is irreducible, let U1, U2

be two nonempty open subsets of U. Since X is irreducible, then by 1) above the open subsets.
U ∩U1 and U ∩U2 of X are nonempty. Hence, again by 1) are tow nonempty open subsets of X,
since X is irreducible, by 1) (U ∩U1) ∩ (U ∩U2) is nonempty. Therefore U1 ∩U2 is nonempty,
which yields (by 1)) U is irreducible.

Lemma 1.1.5 Let X be a topological space. A subspace Y ⊆ X in X is irreducible if and only if its
closure Y is irreducible.

Proof. By proposition 1.1.3 a subset Z of X is irreducible if and only if for any two open subsets U and V
of X which meet Z, U ∩V, also meet Z, i.e., if Z ∩U ̸= ∅ and Z ∩V ̸= ∅ we have Z ∩ (U ∩V) ̸= ∅.
Therefore, to conclude, it suffices to notice that an open subset of X meets Y if and only if it meets Y.

Definition 1.1.6 A maximal irreducible subset of a topological space X is called an irreducible compo-
nent of X.

Let X be a topological space. Lemma 1.1.5 shows that every irreducible component is closed. The set
of irreducible subsets of X is ordered inductively, as for every chain of irreducible subsets their union is
again irreducible. Thus Zorn’s lemma‡ implies that every irreducible subset is contained in an irreducible
component of X. In particular, every point of X is contained in an irreducible component. This shows
that X is the union of its irreducible components.
For later use, we record one more lemma.

Lemma 1.1.6 Let X be a topological space and let X =
⋃

i∈I Ui be an open covering of X by connected
open subsets Ui.

1) If X is not connected, then there exists a nonempty subset J of I such that for all j ∈ J, i ∈ I\J,
Uj ∩Ui = ∅.

2) If X is connected, I is finite, and all the Ui are irreducible, then X is irreducible.

Proof. To prove 1), note that if we can write X = V1 ∪V2 as a disjoint union of open and closed subsets
V1, V2, than each Ui is be contained in either V1 or V2, so we can set J = {i ∈ I; Ui ⊆ V1} .
For the second part, recall that every irreducible subset is contained in an irreducible component, so
the assumption implies that X has only finitely many irreducible components, say X1, . . . , Xn. Assume
n > 1. Since the Xi are closed, and X is connected, X1 must intersect another irreducible component,
say X2 and let x ∈ X1 ∩ X2. Let i ∈ I with x ∈ Ui. Then Ui ∩ X1 is open and hence dense in X1, and
similarly for X2, so that the closure of Ui in X contains X1 ∪ X2, a contradiction.

Next proposition relates irreducible algebraic sets in An to prime ideals of k[T1, . . . , Tn].

Proposition 1.1.4 An affine algebraic set X ⊆ An is irreducible if and only if I(X) is a prime ideal of
k[T1, . . . , Tn] (which is equivalent to the fact that k[X] is a domain).

Proof. Suppose X is irreducible and let f , g ∈ k [T1, . . . , Tn] be such that f g ∈ I(X). Then X ⊆
Z( f g) = Z( f )∪ Z(g). Since X is irreducible, then X is contained in Z( f ) or in Z(g). So f ∈ I(X) or
g ∈ I(X), proving that I(X) is a prime ideal.
Conversely, suppose that X is the union of two closed subsets X1 and X2 that are both different from X.
Then, for i = 1, 2, there exist fi ∈ I (Xi) \ I(X)(i = 1, 2) It is clear that f1 f2 vanishes on X1 ∪X2 = X,
so that f1 f2 ∈ I(X). Thus, I(X) is not a prime ideal of k[T1, . . . , Tn].

‡Zorn’s lemma, also known as Kuratowski-Zorn lemma originally called maximum principle, is a statement in the lan-
guage of set theory, equivalent to the axiom of choice, that is often used to prove the existence of a mathematical object when
it cannot be explicitly produced.
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Example 1.1.4 1) The affine space An is irreducible (and thus connected) by proposition 1.1.4, since
its coordinate ring k[An] = k [T1, . . . , Tn] is an integral domain.

2) The union X = V (x1x2) ⊂ A2 of the two coordinate axes X1 = V (x2) and X2 = V (x1)
is not irreducible, since X = X1 ∪ X2. But X1 and X2 themselves are irreducible. This gives a
decomposition of X into a union of two irreducible spaces.

Remark 1.1.3 The correspondence of corollary 1.1.3 induces a bijection

{irreducible algebraic sets of An} ←→ {prime ideals in k [T1, . . . , Tn]}

From the Nullstellensatz, we obtain the following relations between algebraic objects and and geometric
one :
Let A = k[T1, . . . , Tn] with k algebraically closed field. Then the mappings X 7−→ I(X) and J 7−→
Z(J) give a one-to-one inclusion reversing correspondence between the objects in the left and right-hand
columns in the following table :

Algebra Geometry
maximal ideals of A points of An

prime ideals of A irreducible algebraic sets of An

radical ideals of A algebraic sets An

(1.3)

Definition 1.1.7 An affine algebraic variety is an irreducible algebraic sets of An.

In what follows we introduce the concept of a Notherian (topological) space. As will be seen, these spaces
allow nice decomposition into irreducible components.

Noetherian topological spaces

Definition 1.1.8 A topological space X is called Noetherian if it is satisfies the descending chain condi-
tion for closed subsets : For any sequence closed subsets of X if :

Y1 ⊇ Y2 ⊇ . . .

, is a such sequence, then there is an integer r such that Yr = Yj, for all j ≥ r.

Lemma 1.1.7 Let X be a topological space that has a finite covering X =
⋃r

i=1 Xi by Noetherian sub-
spaces. Then X itself is Noetherian.

Proof. Let X ⊇ Y1 ⊇ Y2 ⊇ . . . be a descending chain of closed subsets of X. Then
(
Yj ∩ Xi

)
j

is a

descending chain of closed subsets in Xi. Therefore there exists an integer Ni ≥ 1 such that Yj ∩ Xi =
YNi
∩ Xi for all j ≥ Ni. For N := max {N1, . . . , Nr}, we have Yj = YN for all j ≥ N.

Lemma 1.1.8 Let X be a Noetherian topological space.

i) Every subspace of X is Noetherian.

ii) Every open subset of X is compact (in particular, X is compact).

Proof. i) Let (Zi)i be a descending chain of closed subsets of a subspace Y. Then the closures Zi of
Zi in X form a descending chain of closed subsets of X which becomes stationary by hypothesis.
As we have Zi = Y ∩ Zi, this shows that the chain (Zi)i becomes stationary as well.
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ii) By i) it suffices to show that X is compact. Let (Ui)i be an open covering of X and let U be the
set of those open subsets of X that are finite unions of the subsets Ui. As X is Noetherian, U has
a maximal element V. Clearly V = X, otherwise there existed an Ui such that V ⊊ V ∪Ui ∈ U .
This shows that (Ui)i has a finite sub-covering.

Example 1.1.5 An is a Noetherian topological space. Indeed, If Y1 ⊇ Y2 ⊇ . . . is a descending chain of
closed subsets, then I(Y1) ⊆ I(Y2) ⊆ . . . is an ascending chain of ideals in A := k [T1, . . . , Tn] . Since
A is a Noetherian ring, this chain of ideals is eventually stationary. But for each i, Yi = Z(I(Yi)), so the
chain Yi is also stationary.

Proposition 1.1.5 If X is an algebraic subset of An, then X is a Noetherian space.

Proof. Let X be an algebraic subset of An, by lemma 1.1.8 i) and example 1.1.5, then X is a Noetherian
space.

Theorem 1.1.3 Let X be a Noetherian topological space. Then X is a union of finitely many irreducible
closed subsets Xk of X. Furthermore, if Xi ̸⊂ Xj for any i ̸= j, then the subsets Xk are unique, up to a
permutation of the indices.

Proof. Let us prove the first part of this result. If X is irreducible, then the assertion is obvious. Other-
wise, X = X1 ∪X2, where Xi are proper closed subsets of X. If both of them are irreducible, the assertion

is true. Otherwise, one of them, say X1 is reducible. Hence X1 = X
′
1 ∪ X

′
2 as above. Continuing in this

way, we either stop somewhere and get the assertion or obtain an infinite strictly decreasing sequence
of closed subsets of X. But the later case is impossible because X is Noetherian. To prove the second
assertion, we assume that

X = X1 ∪ · · · ∪ Xs = W1 ∪ · · · ∪Wt

where no one of the Xi (resp. Wj ) is contained in another Xi′ (resp. Wj′). We can assume that s ≤ t.
Obviously, we have :

X1 = (X1 ∩W1) ∪ · · · ∪ (X1 ∩Wt)

Since X1 is irreducible, one of the subsets X1 ∩Wj is equal to X1, i.e., X1 ⊆ Wj. We may assume
that j = 1. Similarly, we show that W1 ⊆ Xi for some i. Hence X1 ⊆ W1 ⊆ Xi. This contradicts
the assumption Xi ̸⊆ Xj for i ̸= j, so necessarily i = j, hence X1 = W1 repeating this argument for
X2, . . . , Xs, we may assume that Xi = Wi, for all 1 ≤ i ≤ s. It will follow that necessarily t = s.

Remark 1.1.4 Compare this proof with the proof of the theorem on factorization of integers into prime
factors. Irreducible components play the role of prime factors.

In view of proposition 1.1.5, we can apply the previous terminology to affine algebraic sets X.

Corollary 1.1.5 Every algebraic set in An can be expressed uniquely -up to a permutation of the indices-
as a union of varieties, no one containing another.

Example 1.1.6 Let f = f a1
1 · · · f ar

r be a decomposition of f into a product of irreducible polynomials.
Then

Z( f ) = Z ( f1) ∪ · · · ∪ Z ( fr)

since the ideal ( fi) of k[T1, . . . , Tn], generated by fi is prime, then Z( fi) is a variety, therefore the above
gives the decomposition of Z( f ) into a union of varieties.
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1.1.2 Projective varieties

We fix a ground field k, which we will always assume to be algebraically closed (we will nevertheless
recall this fact in the statement of the main theorems). Let Pn denote the projective space consisting of
lines passing through the origin, but without including the origin the vector space kn+1. An element of
Pn represented by the line generated by the nonzero vector x = (x0, . . . , xn) ∈ kn+1 will be denoted by
[x] = (x0 : . . . : xn). The elements (k is not necessarily a number field) x0, . . . , xn are not all zero, and
they are defined only up to a common scalar multiple. They are called the homogeneous coordinates of
the point [x] ∈ Pn.
Let f ∈ k[T0, . . . , Tn] be a polynomial of degree d with homogeneous decomposition

f = f0 + . . . + fd.

Given a point x = (x0 : . . . : xn) ∈ Pn, we cannot define the expression f (x) as f (x0, . . . , xn), since
it clearly depends on the choice of a vector representing x. Indeed, a general representative for x will
have the form (λx0, . . . , λxn) (with λ ̸= 0 ) and then f ((λx0, . . . , λxn)) = f0 (λx0, . . . , λxn) +
. . . fd (λx0, . . . , λxn) = f0 (x0, . . . , xn) + . . .+ λd fd (x0, . . . , xn), which clearly varies when λ varies.
However, if f is homogeneous of degree d, we have f (λx0, . . . , λxn) = λd f (x0, . . . , xn).
Even if then f (x) is not defined neither, it makes sense at least to say when it is zero, since obviously
f (λx0, . . . , λxn) = 0 for any λ ̸= 0 if and only if f (x0, . . . , xn) = 0.

Lemma 1.1.9 Let k be an infinite field, f ∈ k[T0, . . . , Tn], f0, . . . , fd be forms with deg ( fi) = i, such

that f = ∑
d
i=0 fi. P ∈ Pn(k) is a root of f if and only if P is a root of fi for all 0 ≤ i ≤ d.

Proof. If P is a root of every fi, then obviously it is also a root of f . Conversely, let (x0 : . . . : xn) be a
fixed tuple of homogeneous coordinates of P. We consider the polynomial

g(λ) = f (λx0, . . . , λxn) =
d

∑
i=0

λi fi (x0, . . . , xn)

For P to be a root of f , the polynomial g must vanish on all λ ∈ k\{0}. Since k is infinite, this is only
possible if g = 0, i.e., fi (x0, . . . , xn) = 0 for all 0 ≤ i ≤ d.

The main objects we are going to study will be the subsets of a projective space defined as zeros of homo-
geneous polynomials. More precisely :

Definition 1.1.9 A projective algebraic set X ⊂ Pn is a subset for which there exists a set of homoge-
neous polynomials

{
f j | j ∈ J

}
such that

X =
{

p ∈ Pn | f j(p) = 0 for all j ∈ J}

For practical reasons, and in view of the previous lemma, we will say that f (x) = 0 for a point x ∈ Pn

and an arbitrary polynomial f ∈ k [T0, . . . , Tn] if and only if any homogeneous component of f vanishes
at x. With this convention we can make the following definitions :

Definition 1.1.10 i) The projective algebraic set defined by a subset M ⊆ k[T0, . . . , Tn] will be

Z(M) := {x ∈ Pn | f (x) = 0, for any f ∈ M} .

ii) The homogeneous ideal of a subset X ⊆ Pn will be the ideal

I(X) := { f ∈ k[T0, . . . , Tn] | f (x) = 0 for any x ∈ X} .

iii) The graded ring of a projective algebraic set X is the ring

S(X) := k [T0, . . . , Tn] /I(X).
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Remarks 1.1.2 i) If we want to distinguish these projective constructions from the affine ones in
definition 1.1.9 and definition 1.1.1, we will denote them by Zp(M) and Ip(X), and the affine ones
by Za(S) and Ia(X), respectively.

ii) An ideal I of k[T0, . . . , Tn] is said to be homogeneous if, for every f = ∑
d
i=0 fi ∈ I, fi form

of degree i also fi ∈ I for 0 ≤ i ≤ d. So, as one can easily see, X ⊆ Pn, the ideal I(X) is
homogeneous.

Example 1.1.7 1) As in the affine case, the empty set ∅ = Zp(1), and the whole space Pn = ZP(0)
are projective algebraic sets.

2) Let x ∈ Pn be a point. Then the one-point set {x} = Zp(T0− x0, . . . , Tn− xn), with (x0, . . . , xn)
the homogeneous coordinates of x is a projective algebraic set.

Proposition 1.1.6 The operators Zp and Ip satisfy the following properties :

1) I(Pn) = {0} (k is assumed to be infinite), Ip(∅) = k[T0, . . . , Tn], Zp({0}) = Pn, and Zp({1}) =
∅.

2) If M ⊂ k [T0, . . . , Tn] and (M) is the ideal generated by M, then Zp(M) = Zp((M)). In
particular, any projective algebraic set can be defined by a finite number of equations.

3) If M ⊂ M′ ⊂ k [T0, . . . , Tn], then Zp (M′) ⊂ Zp(M) ⊂ Pn.

4) If
{

Mj

}
j∈J

is a collection of subsets of k [T0, . . . , Tn], then Zp

(⋃
j∈J Mj

)
=

⋂
j∈J Zp

(
Mj

)
.

5) If
{

Ij

}
j∈J

is a collection of ideals of k [T0, . . . , Tn], then Zp

(
∑j∈J Ij

)
=

⋂
j∈J Zp

(
Ij

)
.

6) If I ⊂ k [T0, . . . , Tn] is any homogeneous ideal, then Zp(I) = Zp(rad(I)).

7) If I, I′ ⊂ k [T0, . . . , Tn] are two homogeneous ideals, then Zp (I ∩ I′) = Zp (I I′) = Zp(I) ∪
Zp (I′).

8) If X ⊂ X′ ⊂ Pn, then Ip (X′) ⊂ Ip(X).

9) If
{

Xj

}
j∈J

is a collection of subsets of Pn, then Ip

(
∪j∈JXj

)
=

⋂
j∈J Ip

(
Xj

)
.

10) For any X ⊂ Pn, X ⊂ Zp(I(X)), with equality holding if and only if X is a projective algebraic
set.

Proof. We will just prove the first part of 1), leaving the rest since it can be proved by analogous argu-
ments as we saw in the affine case. So we just need to prove that a homogeneous polynomial vanishing at
Pn is necessarily the zero polynomial. We will prove it by induction on n, the case n = 0 being trivial. So
assume n > 1 and write f = f0 + f1T1 + . . . + fdTd

n , with f0, f1, . . . , fd ∈ k [T0, . . . , Tn−1] and fd ̸= 0.
We thus know by induction hypothesis that we can find (x0 : . . . : xn−1) such that fd (x0, . . . , xn−1) ̸=
0. But then the polynomial f (x0, . . . , xn−1, Tn) ∈ k [Tn] is nonzero, so it has a finite number of roots.
Hence the fact that k in infinite implies that we can find a point (x0 : . . . : xn−1 : xn) not vanishing on
f .

Definition 1.1.11 Part 1), 4) and 7) of proposition 1.1.6 show that the set of projective algebraic sets
satisfy the axioms needed to be the closed sets of a topology in Pn. This topology (in which the closed
sets are exactly the projective algebraic sets) is called the Zariski topology on Pn. The intersection of
a projective algebraic set with an open set will be called a quasi-projective algebraic set. The topology
induced by the Zariski topology on any quasi-projective algebraic set will be still called Zariski topology
on that quasi-projective algebraic set.
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Recall the following : Let I be a homogeneous ideal of k[T0, . . . , Tn]. We say that I homogeneous prime
(or graded prime) if for any forms (i.e., homogeneous polynomials) f and g of k[T0, . . . , Tn], if f g ∈ I,
then f ∈ I or g ∈ I. The (homogeneous) ideal I is said to be prime if the above implication holds but for
arbitrary polynomials (non necessarily homogeneous) f and g of k[T0, . . . , Tn].

Lemma 1.1.10 i) A homogeneous ideal I of k [T0, . . . , Tn] is prime if and only if

f g ∈ I implies f ∈ I or g ∈ I

for arbitrary forms f , g ∈ k [T0, . . . , Tn].

ii) If I is homogeneous, then also rad(I) is homogeneous.

Proof. i) We have to show that a homogeneous ideal I of k[T0, . . . , Tn] is prime if and only if it is
homogeneous prime. One sense of this implication is clear. Remains to prove that I is prime when
it is homogeneous prime. To see this, assume that there exists polynomials f , g such that

f g ∈ I, but f , g /∈ I

Let f , g be such that deg( f g) is least with this property. Write

f = fk + . . . + f0

g = gl + . . . + g0

where fi, gi are forms of degree i, and both fk and gl are nonzero. Since I contains f g, is must
also contain its highest degree form fkgl, and therefore either fk or gl. Assume fk ∈ I. Then also
( fk−1 + . . . + f0) g = f g− fkg ∈ I, and it is of lower degree than f g. So either ( fk−1 + . . . +
f0) ∈ I, and therefore f ∈ I, or g ∈ I.

ii) Let f = f0 + . . . + fk be a polynomial of k[T0, . . . , Tn] with f0, . . . , fk being forms with increasing
degrees. It suffices to show that f ∈ rad(I) implies fk ∈ rad(I). From f ∈ rad(I) we get
f m = f m

k + lower degree forms ∈ I for some m, so f m
k ∈ I, and therefore fk ∈ rad(I).

Theorem 1.1.4 An ideal I of k [T1, . . . , Tn] is homogeneous if and only if it is generated by a (finite) set
of forms.

Proof. A homogeneous ideal is clearly generated by forms (i.e., by homogeneous polynomials). Con-
versely, an ideal that is generated by forms is plainly a homogeneous ideal. Indeed, these facts are true in
general for any ideal of a graded ring. The fact that such a generating subset can be finite follows from
the fact that the polynomial ring k[T0, . . . , Tn] is noetherian.

As for affine algebraic sets, we call a projective algebraic set X ⊆ Pn irreducible if it is so when endowed
with its Zariski topology, i.e., if it cannot be written as the union of two algebraic subsets.
An irreducible projective algebraic set is called a projective variety. Analogously to the affine case one
proofs that every projective algebraic set can be decomposed uniquely into a union of finitely many pro-
jective varieties. These coincide with the irreducible components of the projective algebraic set.
Furthermore, in analogy to the affine case, one shows (using lemma 1.1.10 i)) that the projective algebraic
set X is irreducible if and only if Ip(X) is prime.
In what follows, we want to show that An can be considered as a topological subspace of Pn. To do this,
we need the following definition :
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Definition 1.1.12 i) Let f = ∑i1,··· ,in∈N ai1,··· ,in Ti1
1 · · · T

in
n be a (nonzero) polynomial of degree d of

k[T1, . . . , Tn]. We define its homogenization to be the polynomial

f h := Td
0 f

(
T1

T0
, . . . ,

Tn

T0

)

= ∑
i1,··· ,in∈N

ai1,...,in Td−i1−···−in
0 Ti1

1 · · · Tin
n of k[T0, . . . , Tn]

obviously this is a homogeneous polynomial of degree d.

ii) The homogenization of an ideal I of k[T1, . . . , Tn] is defined to be the ideal Ih of k[T0, . . . , Tn]
generated by all f h for f ∈ I.

Remark 1.1.5 In the above the homogenization f h would be called the homogenization with respect to
the (new) indeterminate T0. The same homogenization could be made with respect to any other (new)
indeterminate, e.g., when a polynomial f ∈ k[R, S], then for any new indeterminate V, one can define a
homogenization of f with respect to V and have a polynomial f h ∈ k[R, S, V].

Example 1.1.8 For f = T2
1 − T2

2 − 1 ∈ k[T1, T2], we have f h = T2
1 − T2

2 − T2
0 ∈ k[T0, T1, T2].

Remark 1.1.6 If f , g ∈ K[T1, . . . , Tn] are polynomials of degree d and e, respectively, then f g has degree
d + e, and so we get

( f g)h = Td+e
0 f (

T1

T0
, . . . ,

Tn

T0
) · g(T1

T0
, . . . ,

Tn

T0
) = f h · gh.

However, ( f + g)h is clearly not equal to f h + gh in general.

Notation. Let fi = Ti ∈ k[T0, . . . , Tn] and consider the open subset Ui = Pn \ Zp(Ti) of Pn. We
define the map

ϕi : Ui → An, (x0 : . . . : xn) 7−→ (
x0

xi
: . . . :

xn

xi
)

As one can easily see, ϕ is a bijective map, with inverse

ψi : An → Ui, (a0, . . . , âi, . . . , an) 7−→ (a0 : . . . : 1 : . . . : an)

Proposition 1.1.7 For i ∈ {0, . . . , n} the map

ϕi : Ui → An, (x0 : . . . : xn) 7→ (
x0

xi
: . . . :

xn

xi
)

is a homeomorphism§ when Ui and An are endowed with their Zariski topologies.

Proof. We will show this result for i = 0 and (the other cases follow in the same way). Let X ⊆ An

be an algebraic set of An and write X = Z( f1, . . . , fr) with f1, . . . , fr ∈ k[T1, . . . , Tn]. One can
easily see that ϕ−1(X) = Zp(g1, . . . , gr) ∩U0, where gj = f h

j , for all j (recall here that f h
j denotes the

homogenization of f j). So, ϕ−1(X) is closed U0. Conversely, let Y be an algebraic set of U0, then we can
write Y = Zp(g1, . . . , gr)∩U0 with g1, . . . , gr the homogeneous polynomials in k[T0, . . . , Tn]. One can
see that ϕ(Y) = Za(Q1, . . . , Qr), Qi(T1, . . . , Tn) = gi(1, . . . , Tn).

Remark 1.1.7 We have :
Pn = ∪n

i=0Ui

where Ui = Pn \ Zp(Ti) and by the above Ui ≃ An, i.e., Ui and An are homeomorphic. Thus Pn has a
covering by open subsets all homeomorphic to An.

§A homeomorphism between two topological spaces X and Y is a bijection f : X −→ Y both f and f−1 are continuous.
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1.2 Dimension of a variety

In this section, we will introduce the notion of dimension of a topological space, and we will give some
of its elementary properties. Before this we will recall some facts concerning the (Krull) dimension of a
(commutative) ring since will apply this in the study of the dimension of an algebraic variety (projective
or affine).

1.2.1 Dimension of rings

Definition 1.2.1 Let R be a commutative ring and P a prime ideal of R.

i) The height of P is the greatest integer n when there exists a family

P0 ⊊ · · · ⊊ Pn = P

with all Pi being prime ideals of R. We write in this case ht(P) = n. If such (greatest) integer does
not exist, such a large integer does not exist we write ht(p) = ∞.

ii) The (Krull) dimension of the ring R is

dim(R) := sup{ht(P) | P ⊆ R prime }.

Examples 1.2.1 1) Fields are of dimension 0.

2) If R is a principal ideal ring which is not a field, then dim(R) = 1.

3) For any field k, dim(k[X]) = 1.

1.2.2 Transcendence Degree

We can describe the size of a field extension k/E using the idea of dimension from linear algebra

[k : E] = dimE(k)

But this doesn’t say enough about the size of really big field extensions.

[k(T1) : k] = [k(T1, . . . , Tn) : k] = ∞

Another notion of the size of a field extension k/E, called transcendence degree is widely used in field
theory and linear algebra. It has the following two important properties.

tr.degk(k(T1, . . . , Tn)) = n

and if k/E is algebraic, tr.degE(k) = 0.

Algebraic (In)dependence

Definition 1.2.2 A subset S of k said to be algebraically independent over E, if for all nonzero poly-
nomials f (T1, . . . , Tn) ∈ E[T1, . . . , Tn], and s1, . . . , sn ∈ S (all distinct), we have f (s1, . . . , sn) ̸= 0.
Otherwise, we say that S is algebraically dependent over E.

Example 1.2.1 1) If k/E is an algebraic extension and α ∈ k then {α} is algebraically dependent
over E.

2) In k(T1, . . . , Tn)/k, {T1, . . . , Tn} is algebraically independent.
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Lemma 1.2.1 If S ⊆ k is algebraically independent, then S is maximal if and only if k is algebraic over
E(S).

Proof. See [30, Section 030D].

Theorem 1.2.1 (Exchange Lemma). Let k/E be a field extension. If k is algebraic over E(a1, . . . , an),
and {b1, . . . , bm} is an algebraically independent set, then m ≤ n.

Proof. See [30, Section 030D].

Corollary 1.2.1 If k/E has a maximal, finite, algebraically independent set {s1, . . . , sn}, then any other
maximal algebraically independent set also has size n.

Remarks 1.2.1 i) In fact it is true that if k/E has two maximal algebraically independent sets S and
T then |S| = |T|. This is analogous to the fact that the cardinality of a vector space basis is unique,
even when it is infinite. The proof of this fact is difficult, and we will not need this result. We refer
the read to [30, Ch 09FA, Section 030D].

ii) Every extension k/E has a maximal algebraically independent subset.

Definition 1.2.3 1) A maximal algebraically independent subset S ⊆ k is called a transcendence
base for k/E. So by the above lemma, S is a transcendence base for k/E if and only if S is alge-
braically independent and k is algebraic over E(S).

2) The transcendence degree of k/E is the size of a transcendence base. It is denoted tr.deg(k/E).

Example 1.2.2 tr.degQ(Q(
√

2)) = 0.

Theorem 1.2.2 Let k be a field and A be a finitely generated algebra over k. Assume that A is an integral
domain and let F be its field of fractions. Then dim(A) = tr.degk(F).

Proof. See [6, Theorem, 8.9.11, p.282].

Example 1.2.3 We have tr.degk(k(T1, . . . , Tn)) = n, so dim(k[T1, . . . , Tn]) = n.

1.2.3 Dimension of a topological space

Definition 1.2.4 Let X be a nonempty topological space. Considering a strictly increasing chain of
irreducible closed subsets of X :

X0 ⊊ X1 ⊊ · · · ⊊ Xd.

We call d the length of this chain (that is, the number of inclusions in the chain).
The Krull dimension of X is the supremum of the lengths of such chains, denote it by dim(X). We then
write dim(X) = d.

Remarks 1.2.2 1) This notion has no interest if X is a Hausdorff space. Indeed, in such a case we
have dim(X) = 0.

2) By convention we assume that the dimension of the empty set is equal -1.

3) Note that the dimension of X may be equal to ∞.

Lemma 1.2.2 Let X be a nonempty topological space and Y be a nonempty subspace of X. Then
dim(Y) ≤ dim(X). In particular, if dim(X) is finite, then also dim(Y) is so (in this case, the inte-
ger dim(X)− dim(Y) is called the co-dimension of Y in X).
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Proof. Let S0 ⊊ · · · ⊊ Sd a family of irreducible closed subsets of Y and for each i, let Si be the closure
of Si in X, then by lemma 1.1.5, S0 ⊆ · · · ⊆ Sd is a family of (increasing) irreducible closed subsets of
X. Moreover, for any i ∈ {1, . . . , d}, we have Si = Si ∩Y, so Si−1 ̸= Si, hence dim(Y) ⩽ dim(X).

Proposition 1.2.1 Let X be a nonempty topological space. The following statements hold :

1) If X =
⋃

i∈I Ui is an open of X, then dim(X) = sup{dim(Ui)}.

2) If X is Noetherian, and X1, . . . , Xd are its irreducible components, then dim(X) = supi{dim(Xi)}.

3) If Y ⊆ X is closed, X is irreducible, dim(X) is finite and dim(X) = dim(Y), then Y = X.

Proof. 1) Let X0 ⊊ · · · ⊊ Xd be a chain of irreducible closed subsets of X and let x0 be a point of
X0, then of X. Let x ∈ X0 be a point there exists an index i ∈ I such that x ∈ Ui. Plainly, for all
j ∈ {0, . . . , d}, Xj ∩Ui is nonempty; moreover this last set is an irreducible closed subset of Ui.
Consider

X0 ∩Ui ⊆ X1 ∩Ui ⊆ · · · ⊂ Xd ∩Ui

of irreducible closed subsets of Ui. It is a chain of length d. We check that for any 0 ≤ j ≤
d− 1, we have Xj ∩Ui ̸= Xj ∩Uj+1. This shows that dim(X) ≤ dim(Ui). Thus, dim(X) ≤
supi{dim(Ui)}. The reverse inequality follows by lemma 1.2.2.

2) Any chain of irreducible closed subsets of X is completely contained in an irreducible component
of X. Therefore, dim(X) ≤ supi{dim(Xi)}. As in 1) above the equality follows by lemma 1.1.5.

3) Let Y be a proper closed subset of X and let Y0 ⊊ · · · ⊊ Yd be a chain of irreducible closed subsets
of X. Considering the following chain

Y0 ⊊ · · · ⊊ Yd ⊊ X

of irreducible closed subsets of X, we see that dim(Y) < dim(X).

In what follows, we restrict our attention to the case of varieties. We recall that k denotes an algebraically
closed field.

Dimension of an affine variety

Let X ⊆ An be a quasi-affine variety.

Theorem 1.2.3 LetX be an affine variety. Then

dim(X) = dim(k[X])

where K[X] is the affine coordinate ring of X.

Proof. Let X0 ⊊ · · · ⊊ Xm be a family of irreducible closed subsets of X (i.e., of affine varieties contained
in X), then

P0 = I(Xm) ⊊ · · · ⊊ Pm = I(X0)

and P0, . . . , Pm are prime ideals of k[T1, . . . , Tn]. For any i ∈ {1, . . . , m}, we have Xi ⊆ X, so I(X) ⊆
I(Xi). Thus, Pi are prime ideals which contain I(X). It follows that Pi + I(X) are distinct prime ideals
of k[X]. Therefore, dim(X) ≤ dim(k[X]). The reverse inequality follows in the same way by noticing
that any prime ideal of k[X] corresponds to a well defined irreducible closed subset of X.

Corollary 1.2.2 Let X be an affine variety. Then

dim(X) = tr.deg
(

Frac(k[X])
)
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Proof. Since X is an affine variety, then k[X] is a finitely generated k-algebra that is an integral domain,
so dim(k[X]) = tr · degk(Frac(k[X])). The corollary follows then by theorem 1.2.2.

Corollary 1.2.3
dim(An) = n.

Proof. Indeed, we have dim(An) = dim(k[T1, . . . , Tn]) = n.

Corollary 1.2.4 The dimension of an affine variety is finite.

Proof. Let X ⊆ An be an affine variety. Then by lemma 1.2.2, we have

dim(X) ≤ n.

1.3 Regular functions and morphisms

In this section, we will define regular functions on both affine and projective varieties and also morphisms
between varieties. We show at the end of this section that there is an equivalence of categories between the
category of affine varieties (over the base field k) and the category of finitely generated (integral) domains
over k.

1.3.1 Regular functions

Definition 1.3.1 Let X ⊆ An be a quasi-affine variety and let x ∈ X.

i) A function f : X −→ k is said to be regular at x if there exists an open subset U ⊆ X containing
x and polynomials g, h ∈ k[T1, . . . , Tn], with h(y) ̸= 0 for all y ∈ U, such that for all y ∈ U, we
have

f|U(y) =
g(y)

h(y)

ii) A function f : X −→ k, is called a regular function if f is regular at all points of X.

Example 1.3.1 Let f ∈ k[T1, . . . , Tn], then the polynomial function defined is a regular function on any
quasi-affine variety X of An.

Proposition 1.3.1 Let X be a quasi-affine variety.

1) If f : X −→ k is a regular function, then f is continuous for the Zariski topologies on X and k.

2) If f and g are regular functions on X that restrict to the same function on some nonempty open
subset U ⊆ X, then f = g.

Proof. 1) As continuity is a local notion, it suffices to consider the case where f = g
h for some

polynomial functions g and h with h nowhere vanishing. Recall that the proper closed subsets of
k (for its Zariski topology) are the finite subsets of k, so continuity of f then follows from the fact
that, for a ∈ k, we have f−1(a) = Z(g− ah), which is a closed subset of X.

2) The set Z = {x ∈ X | f (x) = g(x)} is the inverse image of 0 (∈ k under the regular function
f − g, so by 1) Z a closed subset of X. Suppose that if f|U = g|U, then it follows from the fact that
U is dense in X (see proposition 1.1.3) that Z = X.

Definition 1.3.2 Let X ⊆ Pn be a quasi-projective variety and let x ∈ X
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i) A function f : X −→ k, is said to be regular at the point x if there exists an open subset U ⊆ X
containing x and homogeneous polynomials of the same degree g, h ∈ k[T0, . . . , Tn] with h(y) ̸= 0
for all y ∈ U, such that for all y ∈ X, we have

f|U(y) =
g(y)

h(y)
.

ii) A function f : X −→ k is called a regular function if it is regular at all points of X.

Proposition 1.3.2 Let f : X −→ k, be a regular function. Then f is continuous when both X and k are
endowed with their Zariski topologies.

Proof. As in the affine case, it is enough to prove that for any element a ∈ k, f−1(a) is closed in X,
a ∈ k. For all x ∈ X, a convenient an open neighbourhood U of x, and homogeneous polynomials of the
some degree g, h with h(y) ̸= 0, for all y ∈ U such that

f|U(y) =
g(y)

h(y)
.

Then
f−1(a) = {y ∈ U | g(y)− ah(y) = 0} = U ∩ Zp(g− ah)

, which is clearly closed in U. The proposition then the following lemma.

Lemma 1.3.1 Let Y be a topological space, Y =
⋃

i∈I Ui be an open covering of Y and Z a subset of Y.
Then Z is a closed subset of Y if and only if Z ∩Ui is closed in Ui for all i.

Proof. If Z is closed in Y, then clearly Z ∩Ui is a closed subset of Ui for all i ∈ I. Conversely, the fact
that each Z ∩Ui is closed in Ui implies the existence of a collection of closed subsets Zi of X such that
Ui ∩ Z = Ui ∩ Zi. We then have :

Y \ Z =
⋃

i∈I(Ui \ Z)
=

⋃
i∈I(Ui ∩Y \ Z)

=
⋃

i∈I(Ui ∩Y \ Zi)

which implies that Z is a closed subset of Y.

Terminology : In what follows, the word variety will be used to mean a quasi-affine or a quasi-projective
variety (which includes affine and projective varieties).

1.3.2 Morphisms of varieties

Definition 1.3.3 Let X and Y be varieties. A morphism of varieties ϕ : X −→ Y is a continuous map
such that for all nonempty open subset V of Y, and for any regular function f : V −→ k, the map
f ◦ ϕ : ϕ−1(V) −→ k is a regular function.

Notation. Let X and Y be tow varieties. We denote by HomVar(X, Y) the set of morphisms from X to
Y.

Remark 1.3.1 The composition of two morphisms is a morphism. Indeed, one can consider the category
of varieties whose morphisms are those defined in above.

Let Ui = Pn \ Zp(Ti), we previously saw that Ui is homeomorphic to An. The next proposition shows
that the canonical homeomorphism between Ui and An is an isomorphism of varieties.
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Proposition 1.3.3 Let Ui = Pn \ Zp(Ti). Then the map

ϕi : Ui −→ An, (x0 : . . . : xn) 7−→ (
x0

xi
, . . . ,

xn

xi
).

is an isomorphism of varieties

Proof. We have already shown in proposition 1.1.7 that ϕ is a homeomorphism.
To simplify the notation we take i = 0 and denote U0 and ϕ0 simply by U and ϕ, respectively. To show
that ϕ is a morphism of varieties, let V be a nonempty open subset of An and let f : V −→ k be a regular
function. Locally, f is a quotient of two polynomials functions, so without losing the generality we can
assume that f is a quotient on the whole V i.e., there exist polynomials g and h ∈ k[T1, . . . , Tn], such
that for all y ∈ V, h(y) ̸= 0 and f = g

h . One can then easily deduce that f ◦ ϕ : ϕ−1(V) −→ k is a
regular function. Indeed, we have :

( f ◦ ϕ)(y) = (
g

h
◦ ϕ)(y) =

g ◦ ϕ(y)

h ◦ ϕ(y)
=

Td
0 f h(y)

Te
0 gh(y)

, for all y ∈ ϕ−1(V)

where e = deg( f ) and d = deg(g).
Conversely, Recall ϕ−1 : An −→ U is defined by (b1, . . . , bn) 7−→ (1 : b1 : . . . : bn). Let W be
a nonempty open subset of U and g : W −→ k a regular function. g ◦ ϕ−1 : ϕ(W) −→ k is a
regular function. Then, locally g is a quotient of two homogeneous polynomials of the same degree. Also
here without losing the generality we can suppose that on whole W g is a quotient of such polynomial

functions, say P
Q where P, Q ∈ k[T0, . . . , Tn] i.e ∀y ∈W, Q(y) ̸= 0 and g(y) = P(y)

Q(y)
.

g ◦ ϕ−1 : ϕ(W) −→ k, is then defined as follows :

g ◦ ϕ−1(x) =
s(P)(x)

s(Q)(x)
, ∀x ∈ ϕ(W), where s(P) := P(1, T1, . . . , Tn).

This shows that g ◦ ϕ−1 : ϕ(W) −→ k is a regular function. This shows that ϕ is an isomorphism of
varieties.

Remark 1.3.2 We previously saw that Pn =
⋃n

i=0 Ui. Moreover, we saw that Ui is homeomorphic to
An, so dim(Ui) = n. It follows that dim(Pn) = supi(dim(Ui)) = n.

Lemma 1.3.2 Let X be an affine variety and ϕ : X −→ k (= A1) be a map. Then, ϕ is a morphism of
varieties if and only if ϕ be a regular function.

Proof. Straightforward.

Proposition 1.3.4 Let X be an arbitrary variety and let Y ⊆ Am be an affine variety. A map of sets
ψ : X −→ Y is a morphism if and only if ti ◦ ψ is a regular function on X for each i, where t1, . . . , tm

are the coordinate functions on Am.

Proof. By lemma 1.3.2, for all i ∈ {1, . . . , m}, ti is a morphism. So, assuming that ψ is a morphism,
it follows that ti ◦ ψ is also a morphism. Conversely, suppose that for all i, ti ◦ ψ is a regular function,
then for any polynomial function f : Y −→ k, f ◦ ψ is regular function. So, for any algebraic set
Z(P1, . . . , Pr) ⊆ Y, it follows from the equality

ψ−1(P1, . . . , Pr) =
r⋂

i=1

(Pi ◦ ψ)−1({0})

that ψ is continuous. Let g : Y −→ k be a regular function, then there exists a nonempty open subset
U ⊆ Y and polynomials g1, g2 such that g|U = g1

g2
. Thus, for any x ∈ ψ−1(U) :

g|U(ψ(x)) =
g1(ψ(x))

g2(ψ(x))

and we know gi ◦ ψ is regular functions for i = 1, 2. So, g ◦ ψ : ψ−1(U) −→ k is a regular function.
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Now, we introduce some rings of functions associated with any varieties.

Definition 1.3.4 Let X be a variety. We denote by O(X) the set of all regular functions on X. One can
easily see that endowed with the natural addition and multiplication, O(X) is in fact a (commutative)
ring we call the ring of regular functions on X. For all x ∈ X, we define the local ring of X at x, denoted
OX,x, or simply by Ox, as being the ring of germs of regular functions at x. Ox can be defined as follows
: the set of all pairs (U, f ), where U is an open subset of X containing x and f : U −→ k is a regular
function, and we consider on this set of pairs the following relation :

(U, f ) ∼ (V, g) if f|U∩V = g|U∩V

One can easily see that this is an equivalence relation. We define Ox to be the corresponding to quotient
set. Usually, when there is no risk of confusion, we just write f for the class of some pair (U, f ). For a
convenient set of polynomials S and regular function g defined on some open subset U \ Z(S) of U, we
will write g|∁Z(S) or g|U\Z(S), for the class defined by the pair (U \ Z(S), g). Note that Ox is indeed a

local ring for the canonical addition and multiplication laws. Its maximal ideal mx is the set of germs of
regular functions, which vanish at x (for if for a regular function f , we have f (x) ̸= 0, then 1

f is regular

function in some neighborhood of x). One can easily see that the residue field Ox/mx is isomorphic to k.

Remarks 1.3.1 1) In what follows, we will need to consider the (canonical) structure of O(X) as a
k-algebra. We precise that this structure is given by the following operations :
Let f : X −→ k and g : X −→ k be two regular functions on X, then.

∗ f + g : X −→ k, is defined by x 7−→ f (x) + g(x).

∗ f g : X −→ k, is defined by x 7−→ f (x)g(x).

∗ λ f : X −→ k, is defined by x 7−→ λ f (x), for all λ ∈ k.

2) Similarly, it is easily verified that Ox is a k-algebra when equipped by the following operations :

∗ < U, f > + < V, g >=< U ∩V, f|U∩V + g|U∩V >.

∗ < U, f > × < V, g >=< U ∩V, f|U∩V × g|U∩V >.

∗ λ· < U, f >=< U, λ f >.

Definition 1.3.5 Let X be a variety, we define the function field k(X) of X as follows : an element of
k(X) is an equivalence class of pairs (U, f ) where U is a nonempty open subset of X, f is a regular
function on U, and where we identify two pairs (U, f ) and (V, g) when f = g on U ∩V.

Remark 1.3.3 Note that k(X) is indeed a field, for :

∗ Let < U, f > and < V, g > two elements of k(X). Since X is irreducible, any two nonempty
open subsets have a nonempty intersection (see proposition 1.1.3). We define :

< U, f > + < V, g > :=< U ∩V, f|U∩V + g|U∩V > .

We show that this defines an abelian group structure on k(X). In the same way we define the
product of two elements of k(X) and the product of an element of k(X) by a scalar of k. We can
easily see that this gives a (commutative) ring structure on k(X).

∗ If < U, f >∈ k(X) with f ̸= 0, we can restrict f to the open set W = U \ Z( f ) it does not
vanish, so that 1

f is regular function on W, hence < U, f > is invertible in k(X) with inverse

< W, 1
f > .
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Relation between k[X] and O(X) when X is an affine variety

Considering an affine variety X ⊆ An, the algebraic object k[X] := k[T1, . . . , Tn]/I(X) consists of
all polynomials k[T1, . . . , Tn] modulo the equivalence relation ∼ (i.e., f ∼ g if f − g ∈ I(X)). We
can identify each element of k[X] with a function defined on X i.e., if P ∈ k[T1, . . . , Tn], then we let
fP+I(X) : X −→ k be the map defined by fP+I(X)(x) := P(x) for all x ∈ X. It is clear that fP+I(X) is a
regular function on X. Thus we have a map :

γ : k[X] −→ O(X)
P + I(X) 7−→ fP+I(X)

(1.4)

It is easy to verify that γ is a homomorphism of k-algebras. Moreover, by proposition 1.3.1 2) γ is
injective.

Theorem 1.3.1 Let X ⊆ An, be an affine variety with affine coordinate ring k[X]. Then :

i) The k-algebras k[X] and O(X) are isomorphic (a canonical isomorphism is given by the map γ in
above).

ii) For each point x ∈ X, let mx ⊆ k[X] be the ideal of functions vanishing at x. Then x 7−→ mx

gives a 1-1 correspondence between the points of X and the maximal ideals of k[X].

iii) For any point x ∈ X we have k[X]mx = (T1 − x1, . . . , Tn − xn) is isomorphic to Ox and we have
dim(Ox) = dim(X).

iv) Frac(k[X]) is isomorphic (as a field) to k(X) and the transcendence degree of the finitely generated
extension k(X)/k is equal to dim(X).

Proof. i) We have seen above that the map γ : k[X] → O(X) is a k-algebra monomorphism. We
will see below that it is also surjective, hence an algebra isomorphism.

ii) By proposition 1.1.2 x 7−→ mx is a one-to-one correspondence between the points of X and the
maximal ideals of k[X].

iii) Let f ∈ k[T1, . . . , Tn] be a polynomial, and let’s denote its image in k[X] by f . For a point
x = (x1, . . . , xn) ∈ X such that f (x) ̸= 0, γ( f ) is a unit with inverse 1/γ( f )|X\Z( f ). Thus, we
obtain an algebra homomorphism

k[X]mx −→ Ox

induced by γ, which is injective (since any polynomial functions that coincide on a nonempty
subset of X are actually equal). Moreover, this is surjective by definition of a regular func-
tion. We previously saw that dim(X) = tr.degk(Frac(k[X])). Moreover, we have dim(Ox) =
tr.degk(Frac(Ox)). We have also Frac(k[X]) = Frac(k[X]mx), so dim(X) = dim(Ox).

iv) Any nonzero element f ∈ k[X] maps under γ to a unit with inverse ( 1
f )|X\Z( f ). Thus we obtain

an injective map
Frac(k[X]) →֒ k(X)

In fact, this map is also surjective : for each nonzero < U, f >∈ k(X), we have < U, f >∈ Ox

for some x ∈ X This follows by the already established isomorphism in iii) and the fact that the
following diagram commutes :

k[X]mx Ox

Frac(k[X]) k(X)

∼
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By theorem 1.2.2 dim(k(X)) = tr.degk(k(X)) and that dim(X) = dim(k[X]). Hence k(X) is an
algebraic extension of k with transcendence degree equal to dim(X).

To end the proof of i), let’s show that the homomorphism γ is surjective. It suffices to see that, up to
identification, we have :

k[X] ⊆ O(X)
⊆ ⋂

x∈XOx

⊆ ⋂
x∈X k[X]mx

Surjectivity now follows from the general fact that for an integral domain R, we have
⋂

m Rm = R (where
the intersection is considered inside the fractions field of R).

Remark 1.3.4 Let U be a nonempty open set of X. We can define a homomorphism of algebras over k, h
from k[X] into k[U] by

< V, f > 7−→ < V ∩U, f|V∩U > .

One can easily see that h is isomorphism of algebras over k. So k[U] ≃ k[X]. Let X be an arbitrary
variety and Y an affine variety and let ϕ : X −→ Y be a morphism. Then there is induced map

ϕ∗ : O(Y) −→ O(X)
f 7−→ ϕ∗( f ) := f ◦ ϕ

We have also already seen that k[Y] ≃ O(Y) (see theorem 1.3.1). We get then a map k[Y] −→ O(X),
which is a homomorphism of algebras over k, and so get a map

β : Homvar(X, Y) −→ Homk−alg(k[Y],O(X))
ϕ 7−→ ϕ∗

The following proposition shows that this map is bijective.

Proposition 1.3.5 The map β defined previously is bijective.

Proof. We describe an inverse to β. Let h : k[Y] −→ O(X) be a homomorphism of algebras over k and
let yi : Y −→ k be the coordinate functions. We previously saw that k[Y] can be (canonically) identified
with O(Y). Under this identification, the functions yi plainly generate the k-algebra of k[Y] (we can
also take yi = Ti + I(Y) ∈ k[Y]). Let zi = h(yi) ∈ O(X), so that zi : X −→ k is a regular function.
Suppose that Y is a variety in An, and consider the map

ϕh : X −→ An

x 7−→ (z1(x), . . . , zn(x))

For each P ∈ I(Y), i.e., P+ I(Y) = 0 in k[Y], we have P(ϕh(x)) = P(z1(x), . . . , zn(x)) = P(h(y1)(x), . . . , h(yn)
Since h is a homomorphism we have P(h(y1)(x), . . . , h(yn)(x)) = h(P + I(Y))(x) = 0, and so
ϕh(x) ∈ Z(I(Y)) = Y, which shows that ϕh(X) ⊆ Y. If we write ti for the coordinate function of
An (so that yi = ti|Y), then we have ti ◦ ϕh = zi for all i. It follows from proposition 1.3.4 that ϕh is a

morphism (of varieties). We have then

α : Homk−alg(k[Y],O(X)) −→ Homvar(X, Y)
h 7−→ ϕh

Let’s show that α and β are mutually inverse to each other. We have β(ϕh) = ϕ∗h : f 7−→ f ◦ ϕh, for all
f ∈ k[Y]. Let x ∈ X, then f ◦ ϕh(x) = f (h(y1)(x), . . . , h(yn)(x)). So, writing f = Q + I(Y), for
some Q ∈ k[T1, . . . , Tn]. We have f ◦ ϕh(x) = h( f )(x). This shows that ϕ∗( f ) = h( f ). So β(ϕh) = h,
i.e β ◦ α(h) = h. It follows that β ◦ α = idHomk−alg

(k[Y],O(X)). Similarly, given ψ : X −→ Y, and

we have α ◦ β(ψ) = α(ψ∗) = ϕψ∗ : X −→ Y, x 7−→ (t1 ◦ ψ(x), . . . , tn ◦ ψ(x)) = ψ(x). which shows
that α ◦ β(ψ) = ψ. It follows that α ◦ β = idHomvar(X,Y).
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Corollary 1.3.1 If X and Y are two affine varieties, then X and Y are isomorphic if and only if k[X] and
k[Y] are isomorphic as algebras over k.

Proof. Immediate from proposition 1.3.5.

Remark 1.3.5 In the language of categories, we can express the above result as follows :

Corollary 1.3.2 The functor X −→ k[X] induces an arrow-reversing equivalence of categories between
the category of affine varieties over k and the category of finitely generated integral domains over k.

Proof. Immediate from proposition 1.3.5.

1.4 Rational functions

In Algebraic Topology, the notion of homeomorphism is relaxed to homotopy equivalence which leads to
significant theorems (Whitehead’s Theorem)¶ relating topology to algebra. Similarly, rational functions
are a relaxation of morphisms of varieties. We continue in this section, we explore how this notion inter-
acts with algebra. We continue in this to assume that k is an algebraically closed field.

Let X and Y be two varieties. We consider the set SX,Y of all pairs (U, ϕ), where U is a nonempty
open subset of X, and ϕ : U −→ Y is a morphism of varieties. On SX,Y, we define the following
equivalence relation

(U, ϕ) ∼ (V, ψ) if and only if ϕU∩V = ψU∩V

The equivalence class of (U, ϕ) by this relation will be denoted < U, ϕ >.

Definition 1.4.1 i) A rational function of varieties X −→ Y is an equivalence class (with respect to
the above equivalence relation) of a pair (U, ϕ), where U ⊆ X is an open subset, and ϕ : U −→ Y
a morphism.

ii) We say that a rational function X −→ Y is dominant if for some (or equivalently, any) represen-
tative pair (U, ϕ), ϕ(U) is dense in Y.

Remark 1.4.1 Let ϕ : X −→ Y, and ψ : Y −→ Z be two rational functions. Suppose that ϕ = (U, ϕ),
and ψ = (V, ψ), and that ϕ(U) ∩ V is nonempty. Then we may define the composition of ϕ, and ψ by
taking the pair (ψ ◦ ϕ, ϕ−1(V)).
Note that in general, we cannot compose rational functions. The problem might be that the image of the
first function might lie in the locus, where the second function is not defined. However there will never
be a problem when ϕ is dominant.

Lemma 1.4.1 Let f : X −→ Y be a continuous map and U an open subset of Y. Then f−1(U) ⊆
f−1(U).

Proof. This follows from the fact that f is continuous and f−1(U) ⊆ f−1(U).

Lemma 1.4.2 Let X be a variety, Y be an affine variety, ϕ : X −→ Y be a morphism of varieties and
ϕ∗ : O(Y)→ O(X) be the corresponding algebra homomorphism. Then

ϕ(X) = Y if and only if ϕ∗ is injective .

¶In homotopy theory, the Whitehead theorem states that if a continuous mapping f between CW complexes X and Y
induces isomorphisms on all homotopy groups, then f is a homotopy equivalence. This result was proved by J. H. C. White-
head in two landmark papers from 1949, and provides a justification for working with the concept of a CW complex that he
introduced there.
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Proof. Suppose that ϕ(X) = Y, and let f ∈ k[Y] such that ϕ∗( f ) = 0, i.e f ◦ϕ = 0, then f (ϕ(X)) = 0
or equivalently ϕ(X) ⊆ f−1(0). By identifying k[Y] with O(Y), one can see that f is continuous, so

f−1({0}) is a closed subset in Y. Moreover, by assumption, Y = ϕ(X), so Y = f−1(0), or equivalently

f = 0. This shows that ϕ∗ is injective. Conversely, suppose that ϕ(X) ̸= Y, so that there exists

P ∈ I(ϕ(X)) with P /∈ I(Y). Let f = P + I(Y), then we have ϕ∗( f ) = 0, but f ̸= 0, because
P /∈ I(Y).

Remark 1.4.2 In particular, if ϕ : X −→ Y is a rational function, and (U, ϕ) is one representative of ϕ
and if we assume that Y is an affine variety, then

ϕ(U) = Y if and only if ϕ∗ : k[Y] −→ O(U) is injective.

Consequently

ϕ is dominant if and only if for any representative (U, ϕ) of ϕ, ϕ∗ : k[Y] −→ O(U) is injective.

Proposition 1.4.1 Let ϕ : X −→ Y be a rational function between two varieties, with ϕ dominant.
Then ϕ induces a homomorphism of field extensions of k.

ϕ⊥ : k(Y) −→ k(X)

Proof. Let (U, ϕ) one representative of ϕ. The fact that ϕ is dominant implies that ϕ(U) ∩W is
nonempty for any nonempty open subset W of Y. This yields that ϕ−1(W) is nonempty in X, and
hence dense.
Let < V, f > be an element of k(Y), then f ◦ ϕ is defined on ϕ−1(V), and hence gives an element
< ϕ−1(V), f ◦ ϕ > of k(X).
ϕ⊥ is a homomorphism of fields. One can easily see that this construction yields a homomorphism if field
extension of k ϕ⊥ : k(Y) −→ k(X).

Proposition 1.4.2 Let X and Y be an arbitrary variety and Y be an affine variety. Any homomorphism
of fields over k, h : k(Y) −→ k(X) is induced by a dominant rational function ϕ : X −→ Y.

Proof. Let h : k(Y) −→ k(X) be a nonzero homomorphism field extensions of k. We want to show that
h is induced by a rational function ϕh : X −→ Y. For that, consider the restriction h|k[Y] : k[Y] −→
O(X). Since h is a homomorphism of fields, then in particular, h|k[Y] is injective.

Let yi := Ti + I(Y) be the canonical generators of the k-algebra k[Y]. We have h(yi) ∈ k(X), so we
can write h(yi) =< Ui, fi >, where Ui is a nonempty open subset of X, and fi : Ui −→ k is a regular
function. Since X is a variety, then U := ∩n

i=1Ui is nonempty. We have < Ui, fi >=< U, fi|U >,

we can write h(yi) =< U, gi >, where gi = fi|U. It follows that h(yi) ∈ O(U) for all i. Thus,

h(yi) ∈ O(U). By proposition 1.3.5, h|k[Y] corresponds to a morphism of varieties

ϕh|k[Y] : U −→ Y

x 7−→ (h(y1)(x), . . . , h(yn)(x))

We have h|k[Y] is injective and h|k[Y] = (ϕh|k[Y])
∗, so by lemma 1.4.2 ϕh|k[Y](U) = Y. < U, ϕh > is a

dominant rational function from X to Y and as one can easily see h is induced by this (dominant) rational
function.

Notation. Let X and Y be varieties. We will consider the following notation :

1) RF(X,Y):=
{

The set of all rational functions from X to Y
}

.

2)
γ : FR(X, Y) −→ Hom(k(Y), k(X))

ϕ 7−→ ϕ⊥
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3)
λ : Homk−alg

(
k(Y), k(X)

)
−→ FR(X, Y)

h 7−→ ϕh

Theorem 1.4.1 Let X and Y be two affine varieties, then there is a bijection between FR(X, Y) and
Homk−alg(k(Y), k(X)).

Proof. Similar to the proof of proposition 1.3.5.

Definition 1.4.2 We say that a dominant rational function ϕ : X −→ Y of varieties is bi-rational if it
has an inverse. In this case we say that X and Y are bi-rational (or bi-rationally equivalent) and we write
by X ∼bir Y.

Proposition 1.4.3 Let X and Y be two varieties. Then the following statements are equivalent

1) X and Y are bi-rational.

2) X and Y contain isomorphic open subsets.

3) The function fields of X and Y are isomorphic.

Proof. One can derive from theorem 1.4.1 that 1)⇔ 3) and clearly 2) implies 1). It remains to prove
that if X and Y are bi-rational, then they contain isomorphic open subsets. Let ϕ : X −→ Y be a bi-
rational function with inverse ψ : Y −→ X. Suppose that ϕ is defined on U, and ψ is defined on V. Let
W := ϕ−1(V) ⊆ U and let f := ϕ|W . Then f : W −→ f (W) ⊆ V. Note that ψ ◦ f : W −→ W is the

identity morphism. Therefore f (W) = ψ−1(W) is an open and so ψ : f (W) −→W is the inverse of f .

Example 1.4.1 The projective space Pn, and the affine space An are bi-rationally equivalent.

Corollary 1.4.1 The correspondence X 7−→ k(X) defines an equivalence between the category of vari-
eties over k with morphisms the dominant rational functions and the category of finitely generated field
extensions of k.

1.5 Tangent spaces and singularities

We continue to assume in this section that k is an algebraically closed.

1.5.1 Tangent spaces

In Differential Geometry, tangent spaces at least for smooth manifolds, arise very naturally. The tangent
space at a single point is best described as the collection of possible starting directions one can take when
travelling from that point along the manifold. We will sees in this section that a similar notion does exist
for algebraic varieties. For this, we will start with the definition for affine varieties, and build from that
towards a more general formulation.

Notation. For f ∈ k[T1, . . . , Tn] and x = (x1, . . . , xn) ∈ An. The linear map kn 7−→ k given by

dx f (a) :=
n

∑
j=1

∂ f

∂Tj
(x)aj, ∀a = (a1, . . . , an) ∈ kn (1.5)

sends a vector a ∈ kn to the "directional derivative" of f at x along that vector. Thus, for a geometric
interpretation, dx f (a) = 0 precisely for those directions in which f is stationary at x.
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Definition 1.5.1 Let X be a nonempty affine algebraic set, x ∈ X. Let v ∈ kn, we say that v is tangent
to a X at x if dxg(v) = 0, for all g ∈ I(X). The set of all vectors v of kn which verifies this condition is
called the tangent space to X at x. We denote it by TxX.

Remarks 1.5.1 1) Let f1, . . . , fr ∈ k[T1, . . . , Tn] be such that I(X) = ( f1, . . . , fr) and let g ∈
k[T1, . . . , Tn]. For x ∈ X, we have :

∂( fig)

∂Tj
(x) = fi(x)

∂g(x)

∂Tj
+ g(x)

∂ fi

∂Tj
(x) = g(x)

∂ fi

∂Tj
(x). (1.6)

Note that an element of I(X) is of the form ∑
r
j=1 f jhj where hj ∈ k[T1, . . . , Tn]. So, using (1.6) we

can restrict ourselves in definition 1.5.1 to the case where g describes only the elements f1, . . . , fr.

2) Also, we can see the tangent space to X at x as

TxX =
⋂

g∈I(X)

ker(dxg) ⊆ kn.

So, clearly TxX is k− vector subspace of kn.

3) The tangent space is sometimes called the Zariski tangent space, when it is necessary to distinguish
it from other kinds of tangent.

4) TxX = {(v1, . . . , vn) ∈ kn | ∑
n
i=1

∂ f
∂Ti

(x)vi = 0, for all f ∈ I(X)} = ker(Jx), where Jx is the

Jacobian matrix

Jx =
( ∂ fi

∂Tj
(x)

)

1 ≤ i ≤ r, 1 ≤ j ≤ n
(1.7)

so, we have dim(TxX) = n− rank(Jx).

Example 1.5.1 Let X ⊆ A2 be the affine algebraic set defined by the polynomial

f (T1, T2) = T2
2 − T3

1

we have
∂ f
∂T1

= −3T2
1 , and

∂ f
∂T2

= 2T2. So

∂ f

∂T1
(0, 0) =

∂ f

∂T2
(0, 0) = 0.

Hence d(0,0) f is the zero map. Thus

T(0,0)X = A2.

We have another definition of tangent space in terms of derivations.

Tangent space in terms of derivations

Recall that if M is a real manifold, and p ∈ M, a tangent vector Xp in TpM defines a derivation of the
R-algebra Cp(M) :

Cp(M) −→ R

f 7−→ Xp( f ) := dp f (Xp)
(1.8)

In particular, we have
Xp( f g) = Xp( f )g(p) + f (p)Xp(g)

The derivation is actually an R-derivation, since Xp(α) = 0 for all constant functions α ∈ R. Using
Taylor’s formula can prove that the tangent space of M at p is actually isomorphic to the vector space of
derivations of Cp(M) with values in R (Cf., [28]) :

TpM ≃ DerR(Cp(M), R)

We will see below how algebraic tangent spaces are defined in a similar way :
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Definition 1.5.2 Let X ⊆ An be a nonempty affine algebraic set and D : k[X] −→ k be a homomor-
phism of k-vector spaces. We say that D is a derivation of k[X] at x if for all f , g ∈ k[X], we have:

D( f g) = f (x)D(g) + g(x)D( f ).

We denote by Derx(k[X]) the set of derivations of k[X] at x.

Remark 1.5.1 One can easily see that Derx(k[X]) is k-vector space.

Note that if mx is the maximal ideal of k[X] corresponding to a point x of X i.e., mx = {P+ I(X) | P(x) =
0}, then up to a field isomorphism, k[X]mx , for k[X]/mx is a field and k is algebraically closed. Note also,
that if we identify k[X] with its canonical image in the localized algebra k[X]mx and so mx the maximal
ideal of k[X]mx , then for the same reason, we have k[X]mx /mx = k.

Remark 1.5.2 Let (R,m) be a Noetherian local ring and k = R/m, then m/m2 is a finitely generated
k-vector space. By Nakayama’s Lemma, dimk(m/m2) is the minimal number of generators of m.

In particular, if we take, R = k[X]mx , then mx/m2
x is a k-vector space. We will denote its dual space, i.e.,

Hom(mx/m2
x) by (mx/m2

x)
∨.

Lemma 1.5.1 Let X ⊆ An be an affine algebraic set and x be a point of X. Then there exists a homo-
morphism of k-vector spaces from TxX into Derx(k[X]).

Proof. Let v = (vi)1≤i≤n) be a vector of ∈ TxX and consider the map

Dv : k[T1, . . . , Tn] −→ k

f 7−→ ∑
n
i=1

∂ f
∂Ti

(x)vi

It is clear that Dv is a homomorphism of k-vector spaces Moreover, we have Dv( f g) = f (x)Dv(g) +
g(x)Dv( f ) for all f , g ∈ k[T1, . . . , Tn]. Also, by definition, for all f ∈ I(X), we have Dv( f ) = 0. So
Dv induces a homomorphism of k-vector spaces from k[X].

Dv : k[X] −→ k

f 7−→ ∑
n
i=1

∂ f
∂Ti

(x)vi

which is an element of Derx(K[X]).
The map

D : TxX −→ Derx(k[X])
v 7−→ Dv

is a homomorphism of k-vector spaces. Indeed, we have :

D(v+λw)( f ) =
n

∑
i=1

∂ f

∂Ti
(x)(vi +λwi) =

n

∑
i=1

∂ f

∂Ti
(x)vi +λ

n

∑
i=1

∂ f

∂Ti
(x)wi = Dv( f )+λDw( f ), f ∈ k[X].

Lemma 1.5.2 Let X ⊆ An be an affine algebraic set, x ∈ X. Then there exists a homomorphism of
k-vector spaces from Derx(k[X]) into (mx/m2

x)
∨.

Proof. Plainly, any ∆ ∈ Derx(k[X]) induces a homomorphism of k-vector spaces that we denote also
by ∆

∆ : mx −→ k

Let f , g ∈ mx, then we have

∆( f g) = f (x)∆(g) + g(x)∆(g) = 0.
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So ∆ induces a homomorphism k-vector spaces :

∆x : mx/m2
x −→ k.

It’s clear that ∆x ∈ (mx/m2
x)
∨. Moreover, one can easily see that

Θ : Derx(k[X]) −→ (mx/m2
x)
∨

∆ 7−→ ∆x

is a homomrphism of k-vector spaces.

Lemma 1.5.3 Let X ⊆ An be an affine algebraic set and x be an element of X. x ∈ X. Then there exists
a homomorphism of k-vector spaces from (mx/m2

x)
∨ into TxX.

Proof. Let Γ ∈ (mx/m2
x)
∨ and let vi := Γ(Ti − xi +m2

x), then put v = (vi)1≤i≤n. Let us show that
v ∈ TxX. For f ∈ I(X) using taylor’s development, we have

f ≡ f (x) +
n

∑
i=1

∂ f

∂Ti
(x)(Ti − xi)[m

2
x] (1.9)

hence f +m2
x = ∑

n
i=1

∂ f
∂Ti

(x)(Ti − xi) +m2
x.

On the other hand we have

f + I(X) = 0 in k[X].

Then

f +m2
x = 0 in mx/m2

x.

Therefore,
0 = Γ( f +m2

x)

= Γ(∑n
i=1

∂ f
∂Ti

(x)(Ti − xi) +m2
x)

= ∑
n
i=1

∂ f
∂Ti

(x)Γ((Ti − xi) +m2
x)

= ∑
n
i=1

∂ f
∂Ti

(x)vi

which means that v ∈ TxX. We get then a the map

Λ : mx/m2
x −→ TxX

Γ 7−→ (vi)1≤i≤n

where vi = Γ
(
Ti − xi +m2

x

)
. One can easily Λ is a k-vector spaces homomorphism.

Proposition 1.5.1 Let X be a nonempty affine algebraic set of An. Then for any x ∈ X, we have

TxX ≃ Derx(k[X]) ≃ (mx/m2
x)
∨

Proof. It suffices to verify that homomorphisms Θ, D and Λ defined in the preceding lemmas are iso-
morphisms of k-vector spaces.

We aim in what follows to define and study the tangent space of any (algebraic) variety.

Definition 1.5.3 Let X be a projective quasi-variety, x be a point of X and mx be the maximal ideal of
Ox. The tangent space of X at x ∈ X is as

TxX := Homk(mx/m2
x, k) := (mx/m2

x)
∨
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Remarks 1.5.2 Let X and Y be two varieties, then we have the following :

1) For any morphism ϕ : X −→ Y of varieties and any x ∈ X, there is an induced homomorphism of
algebras

ϕ∗ : Oϕ(x) −→ Ox

which sends the maximal ideal mϕ(x) ofOϕ(x) inside the maximal ideal mx ofOx, i.e., ϕ∗(mϕ(x)) ⊆
mx. Indeed, let f ∈ mϕ(x), then ϕ∗( f ) = f ◦ ϕ. So, ϕ∗( f )(x) = f (ϕ(x)) = 0. We get then an
induced algebra homomorphism

mϕ(x)/m
2
ϕ(x) −→ mx/m2

x

which dually yields a k-homomorphism of vector spaces

Txϕ : TxX −→ Tϕ(x)Y

2) If g : Y −→ Z is a morphism and z = g( f (x)), then

Tzg ◦ Tx f = Tx(g ◦ f )

3) Tx(idX) = idTxX.

4) If ϕ is an isomorphism, then we have a corresponding (induced) homomorphism of k-vector spaces

Txϕ : TxX −→ Tϕ(x)Y

is an isomorphism. Indeed, let φ be the inverse of ϕ,

Tϕ(x)φ : Tϕ(x)Y −→ TxX.

Moreover, we have Tϕ(X)φ ◦ Txϕ = Tx(φ ◦ ϕ) = Tx(idX) = idTxX, and Txϕ ◦ Tϕ(x)φ =

Tϕ(x)(ϕ ◦ φ) = Tϕ(X)(idY) = idTϕ(x)Y
. This shows that Txϕ is an isomorphism.

Lemma 1.5.4 If R is a Noetherian local ring with maximal ideal m and let k := R/m, then dim(R) ≤
dimk(m/m2).

Proof. See [3, Corollary 11.15].

Proposition 1.5.2 Let X be a variety and x be a point of X. Then

dimk(TxX) ≥ dim(X).

Proof. Let Ox be the local ring of X at x and mx be the maximal ideal of Ox. We previously saw that
dim(X) = dim(Ox). Also, by lemma 1.5.4, we have dimk(mx/m2

x) ≥ dim(Ox). So, dimkTx(X) =
dimk(mx/m2

x) ≥ dim(X).

Definition 1.5.4 Let R be a Noetherian ring with maximal ideal m and let k := R/m. We say that R is
regular if dimk(m/m2) = dim(R).

Definition 1.5.5 Let X be an algebraic set. The dimension of X at a point x, denoted by dimx(X), is
the maximum of the dimensions of irreducible components of X containing x.

Corollary 1.5.1 Let X be an algebraic set and and x ∈ X. Then

dimk(TxX) ≥ dimx(X).

Proof. Let Z be an irreducible component of X containing x. Obviously TxZ ⊆ TxX. So

dimx(Z) ≤ dimk(TxZ) ≤ dimk(TxX).

Hence
dimk(TxX) ≥ dimx(X).
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1.5.2 Singularities

Definition 1.5.6 Let X ⊆ An be an affine variety of dimension d, and x ∈ X.

i) We say that X is nonsingular (or regular or smooth) in x if rank Jx = n− d.

ii) We say that X is nonsingular it it is nonsingular at all its points.

Notation. We will write Sing(X) :=
{

x ∈ X | x singular
}

.

Example 1.5.2 Let X = Z( f ), where f ∈ k[T1, T2]. Then X is nonsingular at x ∈ X if and only if

( ∂ f

∂T1
(x),

∂ f

∂T2
(x)

)
̸= (0, 0).

For example let f = T3
1 − T2

2 and x = (a, b). We have J(a,b) = ( 3a2 −2b ), so X is nonsingular at x

if and only if (a, b) ̸= (0, 0).

Definition 1.5.7 Let X be a variety and x ∈ X.We say that X is nonsingular at x if the local ring Ox

is regular ring. We say that X is nonsingular if it is nonsingular at every point.

Lemma 1.5.5 Let X be an affine algebraic set of An. For any integer d, the set Xd := {x ∈ X | dimk(TxX) ≥
d} is a closed subset of X.

Proof. Let f1, . . . , fr ∈ k[T1, . . . , Tn] be such that I(X) = ( f1, . . . , fr).
By remarks 1.5.1, we have TxX =

⋂r
i=1 ker(dx fi) = ker(Jx), where

Jx =
( ∂ fi

∂Tj
(x)

)

1 ≤ i ≤ r, 1 ≤ j ≤ n

So dim(TxX) = n− rank(Jx). Hence

Xd = {x ∈ X | rank(Jx) < n− d}

We know that rank(Jx) < n− d is equivalent the fact that : every (n− d)× (n− d) sub-matrix of Jx

has determinant zero. The determinant of a sub-matrix of Jx is a polynomial function, so Xd is a closed
subset of X.

Corollary 1.5.2 Let x be an affine algebraic set of An. Then the following statements are equivalent :

i) X is singular at x.

ii) dim(TxX) > dim(X).

iii) The Jacobian matrix Jx does not have full rank.

Proposition 1.5.3 Let X an be an affine algebraic set of An. The set Sing(X) of singular points of X is
a closed subset of X.

Proof. By lemma 1.5.4, and proof of lemma 1.5.5 the set of singular points is the set of points where the
rank of the Jacobian matrix is < n− d, where d = dim(X). Thus, Sing(X) is an algebraic set defined
by the ideal generated by I(X) together with all determinants of (n− d)× (n− d) sub-matrices of the
matrix Jx.

By the above, Sing(X) is a closed subset of X. In what follows, we want that to show that it is a proper
subset of X.
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Lemma 1.5.6 Let X, Y be two varieties and ϕ : X −→ Y be a bi-rational function. If X admits a
nonsingular point, then so does Y.

Proof. By the above, Sing(X) is a closed subset of X if X has a nonsingular points, then there exists
an open dense subset U ⊆ X containing only nonsingular points. Since X ∼bir Y, then by proposition
1.4.3, there exists two open sets W ⊆ X and V ⊆ Y so that ϕ|W : W −→ V is an isomorphism. So Y

has a nonsingular points as well (any point of ϕ(W ∩U) well do).

Lemma 1.5.7 Let X be a variety of dimension d. Then X is bi-rationally equivalent to a hypersurface
Ad+1.

Proof. See [12, proposition 4.9].

Lemma 1.5.8 Let X be an affine hypersurface, then Sing(X) is a proper closed subset of X.

Proof. Assume that X is an affine subvariety of An+1 and write X = Z( f ), with f is irreducible. We

have x ∈ Sing(X) if and only if
∂ f
∂Ti

(x) = 0, for all i ∈ {1, . . . , n + 1}.
Sing(X) = X,

∂ f
∂Ti
∈ I(X)(= ( f )). Note that ( f ) a prime ideal of k[T1, . . . , Tn+1] and and

∂ f
∂Ti

has

smaller degree (than f). So, Sing(X) = X if and only if
∂ f
∂Ti

is the zero polynomial for all i, which means

that So f is constant, a contradiction.

Theorem 1.5.1 Let X be an affine variety. Then the set Sing(X) of singular points proper closed subset
of X.

Proof. By lemma 1.5.7, X is bi-rationally equivalent to hypersurface H in Ad+1, so by proposition 1.4.3
there exist open subsets U ⊆ X and W ⊆ H which U ≃ W. As seen in lemma 1.5.8, Sing(H) is a
proper closed subset of H. Therefore Sing(W) is proper subset of W.

1.6 Prevarieties

Affine varieties are special objects in the category T A of topological spaces with distinguished algebras
of regular functions. In order to define (abstract) algebraic varieties, we have to replace T A with the
category of spaces (space of functions) over k, where one has not only a distinguished sub-algebra OX on
the entire space X, but for every open subset U of X. In this section, we define this more general category
that we denote by T Ak. We recall that throughout k is an algebraically closed field.

Notation. Let X be a topological space. For any open subset U of X. We pose

Map(U, k) := { f : U −→ k}

the set of all maps defined on U and with values in k.
Map(U, k) is a k-algebra equipped with the usual laws.

Definition 1.6.1 A space of functions over k is a topological space X together with a family OX of sub-
algebras over k, OX(U) ⊆Map(U, k) for every open subset U of that satisfy the following properties:

i) If W, U are two open subsets of X such that W ⊆ U, then for any f (∈ OX(U)), the restriction
f|W ∈ Map(W, k) is an element of OX(W).

ii) Given an open subset U of X and an open cover (Ui)i∈I of U, i.e., Ui are open subsets of X such
that U = ∪i∈IUi, together with fi ∈ OX(Ui) such that

fi|Ui∩Uj
= f j|Ui∩Uj

for all i, j ∈ I. There exists a unique f ∈ OX(U) such that f|Ui
= fi, for all i.
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Remark 1.6.1 The space of functions (X,OX) will often be simply denoted by X.

Examples 1.6.1 1) Let X be a C∞-manifold. For any open subset U of X define

OX(U) := { f : U −→ R | f is C∞}

with restriction maps given by restrictions of functions. Then (X, C∞) is a space of functions over
R.

2) Let X be a quasi-affine variety, for an arbitrary open subset U of X, let

OX(U) := { f : U −→ k | f being a regular function}.

Then (X,OX) is a space of functions.

Definition 1.6.2 (Morphism of space with functions) A morphisms (X,OX) −→ (Y,OY) of spaces
with functions is a continuous map f : X −→ Y such that for any open subset V of Y, and any
ψ ∈ OY(V), we have ψ ◦ f ∈ OX( f−1(V)).

Notation. We will denote ψ ◦ f by f ∗ψ.

Proposition 1.6.1 Let X, Y and Z be spaces of functions over k. Then

1) For any open subset of X, the inclusion map ı : U −→ X is a morphism of spaces of functions.

2) The identity is a morphism.

3) If f : X −→ Y and g : Y −→ Z are morphisms of spaces of functions, then g ◦ f is a morphism.

Proof. 1) By definition of the induced topology on U, ı is continuous. For any open subset V of X
and for any ψ ∈ OX(V) we have for every x ∈ ı−1(V), ı(x) = x, so ψ ◦ ı(x) = ψ(x). Therefore,
ψ ◦ ı ∈ OU(ı

−1(V)).

2) By 1) It suffices to take U = X, and we have idX = ı.

3) It is clear that g ◦ f is continuous. Let W be an open subset of Z, and ψ ∈ OZ(W). Then

g∗ψ ∈ OY(g−1(W)).

So
f ∗g∗ψ ∈ OX

(
f−1(g−1(W))

)

Therefore, we get

(g ◦ f )∗ψ ∈ OX

(
(g ◦ f )−1(W)

)
.

Definition 1.6.3 We define the category T Ak as follows :

∗ Objects : (X,OX) where X is a topological space.

∗ Morphisms : morphisms of spaces with functions.

Remarks 1.6.1 i) If X =
⋃

i∈I Ui is an open cover of X, βi : Ui −→ X are the inclusions, and
f : X −→ Y is any map, then f is a morphism if and only if f ◦ βi is a morphism for all i.

ii) f : (X,OX) −→ (Y,OY) is an isomorphism if and only if f is a homeomorphism and for any
open V ⊆ Y

ψ : V −→ k is in OY(V) if and only if f ∗ψ ∈ OX

(
f−1(V)

)
.
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iii) If X ⊆ An, Z ⊆ Am are two affine varieties, one can easily see that a map h : X −→ Z is a
morphism in the new sense of definition 1.6.2 if and only if it is a morphism in the sense definition
1.3.3.

Definition 1.6.4 An element (X,OX) in T Ak is an affine variety if it isomorphic in T Ak to certain
(Y,OY), where Y is an algebraic set of some Am.

Notation. Let X be a space with functions and let U ⊆ X be an open subspace. We denote by (U,OX|U)
the space U of functions OU(W) := OX|U(W) := OX(W), for any open subset W of U.

Definition 1.6.5 A prevariety is a connected space with functions X with a finite open cover by affine
varieties. This is a topological space X with an open cover (Ui)i∈I such that (Ui,OUi

) is isomorphic to
an affine variety.

Remark 1.6.2 Morphisms of prevarieties are just morphisms in T Ak.

Lemma 1.6.1 Let X be a topological space, and X = U1 ∪ · · · ∪Ur be an open cover of X with all Ui

nonempty. Then X is irreducible if and only if Ui is irreducible for all i, and Ui ∩Uj is irreducible for all
i, j.

Proof. See [26, A.119, p.357].

Proposition 1.6.2 Every prevariety X is an irreducible topological space.

Proof. Immediate, by lemma 1.6.1.

Proposition 1.6.3 Let (X,OX) be a space with functions. If (X,OX) is a prevariety, then X is a
Noetherian topological space.

Proof. Write X = U1 ∪ · · · ∪Ur, where (Ui,OUi
) are affine. Then Ui is Noetherian for all i. Note that

any chain
S1 ⊇ S2 ⊇ · · ·

of closed subsets in X gives a chain

S1 ∩Ui ⊇ S2 ∩Ui ⊇ · · ·
of closed subsets in Ui, so there exists mi such that Sj ∩Ui = Sj+1 ∩Ui for j > mi, whence Sj = Sj+1

for j > max{m1, . . . , mr}.
Properties 1.6.1 Let (X,OX) be a space with functions

i) If (X,OX) is a prevariety, then OX is subspace of the CX(U) of continuous functions to k, i.e.,

CX(U) = { f : U −→ k | f continuous }.

ii) If (X,OX) is a prevariety and ψ ∈ OX(X), then U := {x ∈ X |ψ(x) ̸= 0} is an open subset of
X, and we have 1

ψ ∈ OX(U).

iii) All statements about dimensions of quasi-affine varieties to prevarieties.

iv) If (X,OX) is a prevariety, then the open subsets of X that are affine form a basis for the topology
of X.

Proof. i) Immediate.

iii) Immediate.

iv) Let {Xi} be any open affine covering of X. If U ⊆ X is an open subset of X, the sets Ui := U ∩ Xi

form an open covering of U. The Ui’s will not necessarily be affine, but we know that the principals
open sets in Xi form a basis for its topology, so are affine varieties. Hence we can cover each of the
Ui’s, and thereby U, by affine opens.
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1.7 Normal varieties

In this section, we define the notion of a normal variety that corresponds to normal domains in algebra.
In particular, we show that any nonsingular variety is normal. Along this section, we continue to assume
that k is an algebraically closed field.

Normal rings

Definition 1.7.1 Let R be an integral domain with quotient field K. We say that R is normal if R
coincides with its integral closure in K.

Remark 1.7.1 For more details on normal domains one can see e.g., [3, Chapter 5].

Example 1.7.1 1) A UFD is a normal domain. ([20, Vol I, p.261].)

2) Any DVR is a normal domain.

Proposition 1.7.1 Let R be a domain and K its field of fractions. Then, the following statements are
equivalent.

1) R is normal.

2) S−1R is normal for any multiplicative set of R.

3) Rp is normal for all p ∈ Spec(R).

4) Rm is normal for all m ∈ Spm(R).

Proof. See [23, Proof of theorem 4.1].

Normal varieties

Definition 1.7.2 Let X be an algebraic variety over k and x ∈ X. We say that x is normal if the local
ring Ox is a normal domain. We say that X is normal if all points of X are normal.

Proposition 1.7.2 Let X be an affine variety, then X is a normal if and only if the coordinate ring k[X]
is a normal domain.

Proof. If X is normal, then for all x ∈ X, Ox is normal domain. By theorem 1.3.1, we have k[X]mx ≃
Ox, so k[X]mx is a normal domain. Recall that mx describe all possible maximal ideals of k[X] when x
describes all points of X, therefore by proposition 1.7.1 k[X] is a normal domain. Conversely, if k[X] is
a normal domain, then by proposition 1.7.1 k[X]mx is normal for all x ∈ X, hence Ox(≃ k[X]mx) is
normal for all x ∈ X. So X is normal.

Examples 1.7.1 1) k[T1, . . . , Tn] is a UFD so as seen above. Recall that k[T1, . . . , Tn] = K[X],
where X = An, so by proposition 1.7.2 An is normal.

2) Let X = Z(T2
2 − T3

1 ) ⊆ A2, then X is not normal, indeed we have k[X] = k[T1, T2]/(T
2
2 − T3

1 ) ≃
k[T2, T3] which is not an integrally closed domain in its field of fractions k(T2, T3) = k(T).
Indeed, X2− T2 = 0 is an equation of integral dependence of T over k[T2, T3], but T /∈ k[T2, T3].
In fact, the integral closure of k[T2, T3] in k(T) is k[T].

Theorem 1.7.1 Let X be a normal variety. Then the ring of regular functionsO(X) is a normal domain.
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Proof. We know that O(X) =
⋂

x∈XOx. (intersection taken in k(X)). Thus, the integral closure of
O(X) in k(X) is contained in

⋂
x∈XOx (as each Ox is normal), which is equal to O(X).

Remark 1.7.2 Even if O(X) is a normal domain, X need not be normal for general varieties. Indeed,
in example 1.7.1, let X to be the projetive closure of X. It is a projective variety, and thus O(X) = k,
whence it is a normal domain. But, as X not a normal variety, then X cannot be normal.

Theorem 1.7.2 Let X be nonsingular variety, then X is normal.

Proof. Let x ∈ X, by definition the local ring Ox regular, hence a UFD, hence by example 1.7.1.

Remark 1.7.3 There are varieties which have singular points but are still normal. For example X :=
Z(T1T2 − T2

3 ) is normal and O(0,0,0) is not a regular ring.

1.8 Divisors in algebra

In this section, we introduce the basic definitions and results concerning divisors in terms of places on
rational fields. This will prepare necessary background to give Riemann-Roch result on curves in the
next section. Throughout this section k denotes a field and E an extension field of k.

1.8.1 Places

Definition 1.8.1 Let E be a field and k be a subfield of E. We say E/k is a function field if there is at
least one element x ∈ E that is transcendental over k. The field k is called in this case a constant field of
E. In case E = k(x), we say that E is a rational function field (over k).

Notation. For any field F and any vector space V over F, we denote by dimF(V) or also by [V : F] the
dimension of V over F.

Definition 1.8.2 Let E/k be a field extension. We say that E/k is an algebraic function field in one
variable if there exists a transcendental element x of E over k such that E/k(x) is a finite extension, i.e.,
[E : k(x)] < +∞. We call k the full constant field of E.

Now, we introduce the notions of valuation rings and places in this restricted case of a function field
extension.

Definition 1.8.3 Let E/k be a function field extension. A valuation ring of the function field E/k is a
ring O ⊆ E with the following properties :

i) k ⊊ O ⊊ E.

ii) For every x ∈ E, we have x ∈ O or x−1 ∈ O.

Example 1.8.1 If we take E = k(T), i.e., the quotient field of the polynomial ring k[T], then given an
irreducible monic polynomial q(T) ∈ k[T], we consider the set

Oq(T) :=
{ f (T)

g(T)
| f (T), g(T) ∈ k[T], q(T) . g(T)

}

then it is easy to see Oq(T) is a valuation ring of k(T)/k.

Proposition 1.8.1 Let O be a valuation ring of a function field extension E/k and let k̃ be the algebraic
closure of k in E. Then the following hold :
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1) O is a local with maximal idealM := O \O×, where O× the group of units of O.

2) For every nonzero element x of E, we have x ∈ M if and only if x−1 ∈ O.

3) For the field k̃, we have k̃ ⊆ O and k̃ ∩M = 0.

Proof. 1) It suffices to see that O \ O× is an ideal of O (so O \ O× is the unique maximal ideal of
O).

2) Assume that x ∈ M. If x−1 ∈ O, then we would have 1 = xx−1 ∈ M, which is not true.
Conversely, if x−1 /∈ O, then x ∈ O and x is not invertible in O, so by the above x ∈ M.

3) Let x be a nonzero element of k̃, and suppose that x /∈ O, then x−1 ∈ O. Since x−1 also
algebraic over k, there are elements α1, . . . , αm ∈ k with 1 + . . . + αm(x−1)m = 0. Hence
x−1(αm(x−1)m−1 + . . . + α1) = −1, which implies that x =

(
αm(x−1)m−1 + . . . + α1

)
∈

k[x−1] ⊆ O . So x ∈ O, a contradiction. Therefore, k̃ ⊆ O. Since all nonzero invertible elements
of k̃ are then invertible in O, then k̃ ∩M = 0.

Definition 1.8.4 A valuation of E/k is a map V : E −→ R ∪ {∞} satisfying the following conditions.

i) V(x) = ∞ if and only if x = 0.

ii) V(xy) = V(x) + V(y) for all x, y ∈ E.

iii) V(x + y) ≥ min{V(x),V(y)} for all x, y ∈ E.

iv) V(E∗) ̸= {0}.

v) V(a) = 0 for all a ∈ k∗.

Remarks 1.8.1 i) The symbol ∞ means some element not in R such that ∞ + ∞ = ∞ + m =
m + ∞ = ∞, and ∞ > n for all m, n ∈ R.

ii) Note that if V(x) ̸= V(y), we have V(x + y) = min{V(x),V(y)}.

iii) If the image V(E∗) is a discrete set in R, then V is called discrete valuation. If V(E∗) = Z, then
V is called normalized.

Two discrete valuations V and V ′ of E/k are called equivalent if there exists a constant λ > 0 such that

V(x) = λV ′(x) for all x ∈ E∗.

One can easily to see that this an equivalence relation between the discrete evaluations of E/k. An equiv-
alence class of discrete valuation of E/k is called a place of E/k.

If V is a discrete valuation of E/k, then V(E∗) is a nonzero discrete subgroup of (R,+), and so we
have V(E∗) = cZ for some positive c ∈ R. Thus, there exists a uniquely determined normalized valu-
ation of E that is equivalent to V . In other words, every place P of E/k contains a uniquely determined
normalized valuation of E/k, which is denoted by VP. Thus, we can identify places of E/k and (discrete)
normalized valuations of E/k.

For the normalized valuation VP of E/k we have VP(E∗) = Z. Thus, there exists an element α ∈ E
satisfying VP(α) = 1. Such an element α is called a local parameter (or uniformizing parameter) of E at
the place P.

Definition and Notation 1.8.1 1) PE :=
{

P | P is a place of E/k
}

.
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2) For a place P of E/k, we set
OP := {x ∈ E | VP(x) ≥ 0}.

We call OP the valuation ring of the place P.

Proposition 1.8.2 Let P ∈ PE, the valuation ring OP has a unique maximal ideal given by

MP := {x ∈ E | VP(x) ≥ 1}

Proof. One can easily see thatMP is an ideal of OP. Since 1 ∈ OP \MP , we obtain thatMP is a
proper ideal. It remains to show that any proper ideal I ofOP is contained inMP. Let x ∈ I and suppose
that VP(x) = 0. Then VP(x−1) = −VP(x) = 0, and so x−1 ∈ OP. Thus, 1 = xx−1 ∈ I and, hence,
I = OP a contradiction. Therefore, VP(x) ≥ 1 and I ⊆MP.

It is also necessary to understand some of the next result to recall that every valuation of a function field
in one variable is discrete (see [19, Theorem 1.5.12, p.19]).

Definition 1.8.5 Let P ∈ PE, OP its corresponding valuation ring andMP the maximal ideal of OP.
The field EP := OP/MP is called the residue class field of P. The canonical map, denoted x 7−→ xP

(make this notation throughout the rest for the residue map images), from E to EP is called the residue
class map with respect to P. The degree of P, denoted deg(P), is the dimension [EP : k]. We say that P
is a rational place of E/k if deg(P) = 1.

Lemma 1.8.1 For any place P of E/k, the residue field EP is a finite extension of k, hence the degree of
P is finite.

Proof. See [19, Theorem 1.5.13, p.20].

Corollary 1.8.1 The field k̃ of constants of E/k is a finite field extension of k.

Proof. Choose some P ∈ PE. Since k̃ can be embedded into EP via the residue class map, then [k̃ : k] ≤
[EP : k] < ∞.

Proposition 1.8.3 Let E/k be a function field, R be a subring of E with k ⊆ R and J a nonzero ideal of
R. Suppose that J is a proper ideal of R, then there is a place P ∈ PE that J ⊆MP and R ⊆ OP.

Proof. See [29, Theorem 1.1.19, p.7].

Remark 1.8.1 Recall that if E/k is a function field in one variable, then by proposition 1.8.3 above that
the set PE is nonempty.

Definition 1.8.6 Let P ∈ PE and x ∈ E.

i) We say that P is a zero of x if VP(x) > 0.

ii) We say that P is a pole of x if VP(x) < 0.

iii) If V(x) = n > 0, we say that P is a zero of x of order n.

iv) If VP(x) = −n < 0, we say that P is a pole of x of order n.

Corollary 1.8.2 Let E/k be a function field and x an element of E that is transcendental over k. Then x
has at least one zero and one pole.

Proof. Let x ∈ E. Let R = k[x], and the ideal J = xk[x]. By proposition 1.8.3 there exists a place

P ∈ PE with x ∈ MP, hence P is a zero of x. The same argument proves that x−1 has a zero P
′ ∈ PE.

So P
′

is a pole of x.



40

Lemma 1.8.2 (Approximation Theorem). Let E/k be a function field in one variable, P1, . . . , Pm be
distinct places of E/k, x1, . . . , xm ∈ E and n1, . . . , nm be integers. Then there is some x ∈ E such that

VPi
(x− xi) = ni for i = 1, . . . , m.

Proof. See [19, Theorem 1.5.18, p.22].

Corollary 1.8.3 Let E/k be a function field in one variable. Then E/k has infinitely many places.

Proof. Suppose there are only finitely many places, say P1, . . . , Pm. By lemma 1.8.2 we can find a
nonzero element x ∈ E with VPi

(x) > 0 for i = 1, . . . , m. Then x is transcendental over x, since it has
zeros. But x has no pole, this is a contradiction to Corollary 1.8.2.

1.8.2 Divisors

As previously said in the introduction, divisors in algebraic geometry are in extension of divisors in
number field theory. They reveal a large amount of information about the variety in question. In this
section, we define a divisor in terms of places of the considered function field in one variable. In the next
section, considering a curve over an algebraically closed field, the function field of this curve will be a
function field in one variable, and hence one can translate the definitions and results given here to this
geometric case. Many results in the rest of this chapter will allow to retrieve information about zeros,
poles and the structure of functions defined on the variety through the use of divisors. In this paragraph,
E/k will always denote an algebraic function field in (always replace in the rest function field of one
variable by function field in one variable) one variable such that k is the full constant field of E/k.

Definition 1.8.7 The divisor group of E/k is defined as the (additively written) free abelian group which
is generated by the places of E/k, it is denoted by Div(E). The elements of Div(E) are called divisors of
E/k. In other words, a divisor is a formal sum

D = ∑
P∈PE

nPP.

where nP ∈ Z and nP = 0 for all but finitely many nP.
A divisor of the form D = P with P ∈ PE is called a prime divisor.

Remarks 1.8.2 i) The addition of divisors is defined component-wise :

∑
P∈PE

nPP + ∑
P∈PE

mPP = ∑
P∈PE

(nP + mP)P.

ii) For Q ∈ PE and D = ∑Q∈PE
nQQ ∈ Div(E), we define VQ(D) := nQ.

Definition 1.8.8 (Support of a divisor) Let D be a divisor of E/k. The support of D is defined as

supp(D) := {P ∈ PE | nP ̸= 0}.

It is more convenient to write D = ∑P∈supp(D) nPP.

Definition 1.8.9 (Degree of a divisor) The degree of a divisor is defined as

deg( ∑
P∈PE

nPP) = ∑
P∈PE

nP · deg(P) ∈ Z.

Obviously, the degree is a group homomorphism deg : Div(E) −→ Z. Its kernel is denoted by

Div0(E) = {D ∈ Div(E) | deg(D) = 0}.
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Note that a partial ordering on Div(E) is defined by

D ≤ D
′ ⇔ VP(D) ≤ VP(D

′
) for all P ∈ PE.

The reflexivity, antisymmetry and transitivity follow directly from the definition.

Remark 1.8.2 Note that this partial ordering on Div(E) is not total in general. Indeed, If we take
E = Fq(x) and





P∞ = { f (x)
g(x)

, f (x), g(x) ∈ Fq[x], deg( f (x)) < deg(g(x))}
Pα = Px−α = { f (x)

g(x)
, f (x), g(x) ∈ Fq[X], X− α . g(x) and X− α| f (x)}

Then D = 4Pα − 2P∞ and D
′
= Pα are not comparable

Theorem 1.8.1 Let E/k be a function field in one variable, x ∈ E \ k and let P1, . . . , Pm be zeros of x.
Then

m

∑
i=1

VPi
(x) · deg(P) ≤ [E : k(x)].

Proof. Set n := [E : k(x)]. Suppose that

m

∑
i=1

VPi
(x) · deg(Pi) > n

We have x /∈ k, so x is not algebraic over k (since k is a full constant subfield of E). We set ni = VPi
(x)

and Vj = VPi
for 1 ≤ i ≤ m. Put O :=

⋂m
i=1Oi where Oi = OPi

. By lemma 1.8.2 we can choose
an element yi ∈ E such that Vi(yi) = −1 with Vi(yi) = 0 for all j with 1 ≤ j ≤ m with i ̸= j.
Since [EPi

: k] is finite (as k-vector space), then there exist zit ∈ O, 1 ≤ t ≤ deg(Pi) such that{
zit(Pi)

}
1≤t≤deg(Pi)

forms a k−basis of the residue class field EPi
. In order to arrive at a contradiction,

it suffices to show that zity
j
i ∈ E (1 ≤ t ≤ deg(Pi), 1 ≤ j ≤ ni, 1 ≤ i ≤ m) are linearly independent

over k(x). Suppose there is a nontrivial combination, then it can be written as :

m

∑
i=1

ni

∑
j=1

ηijy
j
i + x

m

∑
i=1

ni

∑
j=1

αijy
j
i = 0 (1.10)

where ηij, αij ∈ O, either ηij = 0 or VPi
(ηij) = 0 and the latter case occurs for at least one pair (i, j).

Now, let d such that
VPd

(ηij) = 0, for some j with 1 ≤ j ≤ nd.

Then

VPd
(

m

∑
i=1

ni

∑
j=1

ηijy
j
i) < 0.

and

VPd
(x

m

∑
i=1

ni

∑
j=1

αijy
j
i) ≥ 0

a contradiction.

Corollary 1.8.4 Let E/k be a function field in one variable. Then every nonzero element x ∈ E has only
finitely many zeros and poles.
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Proof. Let x be a nonzero element of E. If x ∈ k , x has neither zeros nor poles. If x ∈ E \ k, then x is
transcendental over k, so by theorem 1.8.1, the number of zeros is finite. The same argument shows that
x−1 has only a finite number of zeros, so x has a finite number of poles.

Definition 1.8.10 (Effective divisor) A divisor D = ∑P∈PE
nPP is called effective (or positive) at P if

nP ≥ 0 and D is called effective if it is effective at each P.

Definition 1.8.11 (Zero divisor, pole divisor and principal divisor) Let 0 ̸= x ∈ E and denote by Z
(resp. P) the set of zeros (resp. poles) of x in PE. Then we define

i) The zero divisor (x)0 of x by
(x)0 = ∑

P∈Z
VP(x)P.

ii) The pole divisor (x)∞ of x by
(x)∞ = ∑

P∈P
(−VP(x))P.

iii) The principal divisor of x by
(x) = (x)0 − (x)∞.

Remark 1.8.3 Clearly (x)0 ≥ 0, (x)∞ ≥ 0 and

(x) = ∑
P∈PE

VP(x)P. (1.11)

Sometimes the principal divisor of x is denoted by div(x). Obviously, div is a group homomorphism
div : E∗ −→ Div(E).

Definition 1.8.12 The group

Princ(E) := {div(x) | 0 ̸= x ∈ E}

is called the group of principal divisors of E/k. The quotient group

C l(E) := Div(E)/Princ(E)

is called the divisor class group of E/k. Two divisors D and D
′

belonging to the same residue class

of C l(E) are said to be equivalent, we write D ∼ D
′
. This means that D

′
= D + div(x) for some

x ∈ E \ {0}.

1.9 Curves and Riemann-Roch Theorem

In this section we introduce a fundamental space attached to the study of divisors on a function field
in one variable, the so-called Riemann-Roch space. A space that is in particular well known in modern
geometric coding theoryand also in cryptography. We also introduce the notion of an adèle space and
genus of such function field and Weil differentials. As the reader can see, all these notions are part of
algebraic number field theory and apply very well in the case of a (smooth) algebraic affine curve via its
rational function field.
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1.9.1 Curves

Let us start by giving the definition of algebraic curves. Unless otherwise mentioned, we continue to
assume in the rest of this chapter that k is an algebraically closed field.

Definition 1.9.1 Let X be an algebraic variety over k. We say that X is an affine (resp. projective)
algebraic curve if dim(X) = 1.

Notation. Sometimes we will denoted the algebraic curve X over a field k by X/k.

Example 1.9.1 Let f (X, Y) be an irreducible polynomial in two indeterminates coefficients in k Then
the graph in k2 which is defined by the equation f (X, Y) = 0 is an algebraic curve.

Let R be a local domain of dimension one with maximal ideal m and let h := R/m. Recall that R is a
discrete valuation ring if and only if dimh(m/m2) = 1.

Proposition 1.9.1 Let X ⊆ An be an affine algebraic curve and x ∈ X. Then X is smooth at x if and
only if Ox is a discrete valuation ring.

Proof. Note that X is nonsingular at x if and only if the local ring Ox is regular ring . Moreover, since
X is an affine curve, then dim(Ox) = dim(X) = 1 (see theorem 1.3.1 iii)). So X is smooth at x if and
only if Ox is a valuation ring.

Proposition 1.9.2 Let X be an affine algebraic curve. Then the set of singular points is a finite proper
closed subset of X.

Proof. We already saw in theorem 1.5.1 that the set of singular points of X is a proper closed subset of
X. It is finite by [19, Theorem 3.1.7, p.71].

Remark 1.9.1 For more details on nonsingular curves, we refer to [19, Chapter 3].

1.9.2 Riemann-Roch Theorem

In this subsection, we fix an algebraic function field in one variable E/k. As the reader can see, most
results in this section do not need the field k to be algebraically closed. Nevertheless, since k is a full
constant field of E, then k is algebraically closed in E.

The vector space L(D)

Let D be a divisor of E/k, let

L(D) := {x ∈ E∗ | div(x) + D ≥ 0} ∪ {0}.

One can easily see that L(D) is a k-vector space. This space is called Riemann-Roch Space. It dimension
over k will be denoted by l(D), i.e., l(D) := dimk(L(D)).
For any divisor of E, we have x ∈ L(D) if and only if VP(x) ≥ −VP(D) for all P ∈ PE.

Proposition 1.9.3 Let D, D
′

be two divisor of E/k. Then :

1) For the zero divisor 0, we have L(0) = k, and l(0) = 1.

2) If D ≤ D
′
, then L(D) is a subspace of L(D

′
) and dimk(L(D

′
)/L(D)) ≤ deg(D

′
)− deg(D).

3) If D ≥ 0, then l(D) ≥ 1.

4) l(D) is finite for all D.
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5) For any element x ∈ E, we have l(D + div(x)) = l(D).

Proof. 1) For any x ∈ k∗, we have div(x) = 0. So div(x) + 0 ≥ 0, then k ⊆ L(D). Conversely,
if x ∈ L(D) \ {0}, then div(x) ≥ 0. This means that has no pole, so x ∈ k by corollary 1.8.2.
Moreover, l(0) = dimk(L(0)) = dimk(k) = 1.

2) Assume that D ≤ D
′
, let x ∈ L(D), then div(x) + D

′
= div(x) + D + (D

′ − D) ≥ 0. So

x ∈ L(D
′
). For the second assertion we can assume that D

′
= D + P for some P ∈ PE, the

general case follows then by induction. Choose an element x0 ∈ E with VP(x0) = VP(D
′
) =

VP(D) + 1. For x ∈ L(D
′
) we have VP(x) ≥ −VP(D

′
) = −VP(x0), so xx0 ∈ OP. Thus we

obtain a k-linear map

Φ : L(D
′
) −→ EP

x 7−→ xx0P

For an element x ∈ E, we have x ∈ ker(Φ) if and only if VP(xx0) > 0, i.e., VP(x) ≥ −VP(D).

Hence ker(Φ) = L(D) and Φ induce a k-linear injective mapping fromL(D
′
)/L(D) to EP. So

dimk(L(D
′
)/L(D)) ≤ dim(EP) = deg(P) = deg(D

′
)− deg(D).

3) By 1) and 2) we know that k = L(0) is a subspace of L(D). So 1 = l(0) ≤ l(D).

4) Assume that D ≥ 0. Then applying 1) and 2), we get l(D) = dimk(L(D)/L(0)) + 1 ≤
deg(D) + 1. So l(D) < +∞. If D is arbitrary, then it suffices to consider some positive divisor

D
′

such that D ≤ D
′

and to conclude.

5) Let D ∈ Div(E) and let x ∈ E. Then one can easily see that L(D) = xL(D + div(x)).
Since xL(D + div(x)) and L(D + div(x)) have the same dimension over k, then we have l(D +
div(x)) = l(D).

Remark 1.9.2 5) implies that if D
′

is a divisor equivalent to D, then l(D) = l(D
′
).

Lemma 1.9.1 Let D ∈ div(E), if D = D+ − D− with positive divisors D+ and D−, then

l(D) ≤ deg(D+) + 1

Proof. Since L(D) ⊆ L(D+), it is sufficient to show that

l(D+) ≤ deg(D+) + 1.

But this by what we have already shown (See the proof of 4) in proposition 1.9.3.

Remark 1.9.3 It follows by the above lemma that if D ≥ 0, then we have

l(D) ≤ deg(D) + 1 (1.12)

Proposition 1.9.4 All principal divisors have degree zero. More precisely, let x ∈ E \ k, then we have

deg((x)0) = deg((x)∞) = [E : k(x)]

Proof. Set m := [E : k(x)] and D := (x)∞ = ∑
r
i=1−VPi

(x)Pi where P1, . . . , Pr are all the pole

of x. Then deg(D) = ∑
r
i=1 VPi

(x−1) · deg(Pi) ≤ [E : k(x)] (see theorem 1.8.1). Conversely, let
m := [E : k(x)] and let’s show that m ≤ deg(D). For this let’s choose a basis β1, . . . , βm of E/k(x) and
a divisor G ≥ 0 such that div(βi) ≥ −G for i = 1, . . . , m. We have

l(tD + G) ≥ m(t + 1) for all t ≥ 0.
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which follows immediately from the fact xiβ j ∈ L(tD + G) for i = 0, . . . , r, j = 0, . . . , m. Set d =
deg(G), we get m(t + 1) ≤ l(tD + G) ≤ tdeg(D) + d + 1 by lemma 1.9.1. Thus

t(deg(D)−m) ≥ m− d− 1 (1.13)

for all t ∈ N, the right hand side of (1.13) is independent of t, therefore (1.13) is possible only when
deg(D) ≥ m. We have thus proved that deg((x)∞) = [E : k(x)]. Since (x)0 = (x−1)∞, we conclude
that deg((x)0) = deg((x−1)∞) = [E : k(x−1)] = [E : k(x)].

Corollary 1.9.1 If deg(D) < 0, then l(D) = 0.

Proof. Assume that deg(D) < 0 and suppose that there is some nonzero x ∈ L(D), then by definition
deg(div(x)+ D) ≥ 0, but by applying proposition 1.9.4 and the fact that deg is a group homomorphism,
we have deg(div(x) + D) = deg(D)(< 0). It follows then that L(D) = {0}, so l(D) = 0.

Adèles

Most results here are true for an arbitrary function field E/k.

Definition 1.9.2 An adèle of E/k is a mapping

β : PE −→ E
P 7−→ βP

such that βP ∈ OP for all but a finite number of P ∈ PE. We may regard an adèle as an element of the
direct product ∏P∈PE

E and therefore use the notation β = (βP)P∈PE
.

The set
AE := {β | β is an adèle of E/k}

is called the adèle space of E/K. The principal adèle of an element x ∈ E is the adèle whose components
are equal to x. This gives the diagonal embedding x 7−→ (x, x, x, . . .), from E to AE.

Remarks 1.9.1 i) AE is a vector space over k.

ii) The valuations VP of E/k extend naturally to AE by setting VP(β) := VP(βP) (where βP is the
P-component of the adèle β). By definition 1.9.2 VP(β) ≥ 0 for all but finitely many P ∈ PE.

Definition 1.9.3 For any divisor D = ∑P∈PE
nPP, we define

AE(D) := {β ∈ AE | VP(β) + VP(D) ≥ 0 for all P ∈ PE}.

Obviously this is a k-subspace of AE.

For divisors D = ∑P∈PE
nPP and D

′
= ∑P∈PE

mPP, we define min{D, D
′} := ∑P∈PE

min{nP, mP}P,

and max{D, D
′} := ∑P∈PE

max{nP, mP}P

Proposition 1.9.5 Let D = ∑P∈PE
nPP and D

′
= ∑P∈PE

mPP. Then, the following statements hold:

1) If D ≤ D
′
, then AE(D) ⊆ AE(D

′
) and

dimk(AE(D
′
)/AE(D)) = deg(D

′
)− deg(D).

2) AE(min{D, D
′}) = AE(D) ∩AE(D

′
).

3) AE(max{D, D
′}) = AE(D) + AE(D

′
).
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Proof. 1) If D ≤ D
′
, then by definition, mP ≥ nP for all P. Let (βP)PE

∈ AE(D) then

VP(βP) + mP ≥ VP(βP) + nP ≥ 0, for all P ∈ PE.

Thus (βP)P∈PE
∈ AE(D

′
), which shows that AE(D) ⊆ AE(D′). Let’s prove the rest by induc-

tion on deg(D
′
)− deg(D).

∗ If deg(D
′
) = deg(D), then necessarily D = D′ (for D ≤ D′), so AE(D

′
) = AE(D), hence

AE(D
′
)/AE(D) = {0}.

∗ For the rest of the induction, it suffices to consider the case where deg(D
′
)− deg(D) = 1,

D
′
= D + P for some place P. Choose x0 ∈ E, with VP(x0) = VP(D

′
) = VP(D) + 1 and

consider the k−linear map Φ : AE(D
′
) −→ EP defined by β 7−→ x0βPP, which is surjective

with kernel ker(Φ) = AE(D), and so

dimk(AE(D
′
)/AE(D)) = dimk(EP) = deg(P) = 1.

2) Since min{D, D
′} ≤ D, D

′
, then by 1), AE(min{D, D

′}) ⊆ AE(D) ∩AE(D
′
). Conversely, if

(β) ∈ AE(D) and (βP) ∈ AE(D
′
), then for any P ∈ PE,

VP(βP) + nP ≥ 0 and VP(βP) + mP ≥ 0

Thus, we have
VP(βP) + min{nP, mP} ≥ 0.

Therefore

AE(D) ∩AE(D
′
) = AE(min{D, D

′}).

3) We have D, D
′ ≤ max{D, D

′}, so by 1), AE(D) + AE(D
′
) ⊆ AE(max{D, D

′}). Conversely,

for (βP) ∈ AE(D), (αP) ∈ AE(D
′
), if βP = −αP then one can conclude easily. For arbitrary

case, we have VP(βP + αP) ≥ min{VP(βP),VP(αP)}. Thus for all places P,

VP(βP + αP) + max{nP, mP} ≥ min{VP(βP),VP(αP)}+ max{nP, mP}

and
min{VP(βP),VP(αP)}+ max{nP, mP} ≥ 0.

Lemma 1.9.2 Let D, D
′

be two divisor of E/k, if D ≤ D
′
. Then

dimk

(
(AE(D

′
) + E)/(AE(D) + E)

)
=

(
deg(D

′
)− l(D

′
)
)
−

(
deg(D)− l(D)

)
.

Proof. We have an exact sequence of linear mappings

0 L(D
′
)/L(D) AE(D

′
)/AE(D) (AE(D

′
) + E)/(AE(D) + E) 0

γ1 γ2

γ1, γ2 are defined in the obvious manner. The only nontrivial assertion is that the kernel of γ2 is contained

in the image of γ1. In order to prove this let β ∈ AE(D
′
) with γ2(β + AE(D)) = 0. Then β ∈

AE(D) + E, so there is some x0 ∈ E with β− x0 ∈ AE(D). As AE(D) ⊆ AE(D
′
). We conclude

that x0 ∈ AE(D
′
) ∩ E = L(D

′
). Therefore β + AE(D) = x0 + AE(D) = γ1(x0 + L(D)) lies in the

image of γ1. From the exactness of the above sequence, we get that

dimk

(
(AE(D

′
) + E)/AE(D) + E)

)
= dimk

(
AE(D

′
)/AE(D)

)
− dimk

(
L(D

′
)/L(D)

)

=
(
deg(D

′
)− l(D

′
)
)
−

(
deg(D)− l(D)

)
.

In the second equality here, we used proposition 1.9.5 1).
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For any divisor D of E/k, we define

r(D) := deg(D)− l(D).

We obtain a map r : Div(E) −→ Z. We have then the following lemma :

Lemma 1.9.3 Let x ∈ E∗ and D, D
′

be two divisors on E. The following statements hold :

i) If D ≤ D
′
, then r(D) ≤ r(D

′
)

ii) r(div(x) + D) = r(D).

Proof. i) This follows from lemma 1.9.2.

ii) By proposition 1.9.3 5)
l(D + div(x)) = l(D).

Moreover, we have deg(div(x)+D) = deg(D)+ deg(div(x)) and by proposition 1.9.4 deg(div(x)) =
0. So r(div(x) + D) = deg(D)− l(D).

Proposition 1.9.6 Let E/k be an algebraic function field, r(D) has an upper bound, when D describes
the divisors of E/k.

Proof. See [22, Theorem 4.10, p.15].

Genus and the Riemann’s theorem

Definition 1.9.4 (genus) Let E/k be a function field in one variable, the genus of E is defined as

g := 1 + maxD(r(D)).

i.e., g is the last integer for which
deg(D)− l(D) ≤ g− 1.

holds for any divisor D of E/k.

Proposition 1.9.6 (with this definition) gives a proof to the following famous Riemann’s Theorem.

Theorem 1.9.1 Let E/k be an algebraic function field, then there exists a nonnegative integer g depend-
ing only on E such that

l(D) ≥ deg(D) + 1− g (1.14)

for every divisor D of E.

Proof. Clear.

Corollary 1.9.2 There exists an integer c depending only on E such that

l(D) = deg(D) + 1− g

for any divisor D of E/k satisfying deg(D) ≥ c.

Proof. Let D and D0 be two divisors of E/k with g = 1+ r(D0). Set c := deg(D0)+ g. If deg(D) ≥ c
and applying theorem 1.9.1 we obtain

l(D− D0) ≥ deg(D− D0) + 1− g ≥ c− deg(D0) + 1− g = 1.

Thus there exists a non-zero element z in L(D− D0). Let the divisor D
′

:= div(z) + D, which ≥ D0.
We have

deg (D)− l(D) = deg(D)− l(D
′
)

≥ deg(D0)− l(D0) = g− 1

Hence l(D) ≤ deg (D) + 1− g.



48

Corollary 1.9.3 Let D be a divisor such that deg(D) ≥ c where c is the constant in corollary 1.9.2, we
have

AE(D) + E = AE.

Proof. By lemma 1.9.2

dimk

(
(AE(D

′
) + E)/AE(D) + E)

)
= r(D

′
)− r(D)

for any divisors D
′ ≥ D, by corollary 1.9.2 deg(D) ≥ c implies r(D) = g − 1. Thus if deg(D

′
),

deg(D”) ≥ c, then

AE(D”) + E = AE(D
′
) + E

For any divisor D = ∑P nPP with deg(D) ≥ c and for any adèle (βP), define G := max
(

D,−div(βP)
)
.

Therefore, G ≥ D, deg(G) ≥ deg(D) ≥ c. By the above we get AE(G) + E = AE(D) + E. We have
also (βP) ∈ AE(−div(βP)) ⊆ AE(G) ⊆ AE(G) + E = AE(D) + E. If deg(D) is large enough,
then any adèle is in AE(D) + E and we have AE ⊇ AE(D) + E since AE(D) and E are both subsets
of the adèles under the diagonal embedding. Thus

AE(D) + E = AE.

In the case of an algebraic function field E/k, we already defined its genus, so by the same way we define
the genus of an algebraic nonsingular projective curve as :

Definition 1.9.5 The genus of a nonsingular projective curve X over k is defined to be the genus of its
k-rational function field k(X).
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Chapter 2

Introduction to Schemes

In this chapter we aim to present basic background of scheme theory. The material developed her covers
elementary definitions and properties and is oriented in order to prepare necessary tools to understand the
meaning of Severi-Brauer varieties in the third chapter. In particular, we will study some local and global
properties of schemes like the notions of reduced, integral, regular, normal, separated, proper, projective
schemes. We will also study modules over schemes, some cohomological interpretations in scheme theory
and introduce Weil and Cartier divisors.

2.1 Generalities on sheaf theory

Sheaves are tools which allow us to keep track of local information on a topological space in a single math-
ematical object. Their use is ubiquitous throughout algebraic geometry. In this section, we will study
their basic theory. We present the notions of presheaf and sheaf on a topological space, that of morphisms
of presheaves, as well as their first properties : injectivity and surjectivity, exact sequences. We then
study the direct image and inverse image functors, which allow to pass from a sheaf on a topological
space to a sheaf on another space and which play a fundamental role in the study of the schemes. Finally,
we end with the study of the gluing of bundles

Notation. Let X be a topological space. We will denote by TX the category having for objects the open
subsets of X and for morphisms identity maps and inclusions. Also, C will denote a category, which can
be the category of sets (also denoted by Set), that of groups (also denoted by Gp), that of R-modules (also
dented byR-Mod), that of R-algebras (also dented by R-Alg), for some ring R.

2.1.1 Presheaves

Definition 2.1.1 Let X be a topological space. A presheaf F (of sets) on X consists of the following deta:

i) For every open subset U of X, a set F (U).

ii) Whenever U ⊆ V are two open subsets of X, a map

resV,U : F (V) −→ F (U)

called the restriction map, which satisfies the following conditions :

a) resU,U = idF (U).

b) Having three open subsets U ⊆ V ⊆W of X, then resV,U ◦ resW,V = resW,U

Remarks 2.1.1 1) We will mostly write s|U for s when s ∈ F (U). The elements of F (U) are
usually called sections of (the presheaf F ) over U.
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2) By considering F (U) as an object in some category C and assuming that resV,U is a morphism
between the objects F (V) and F (U), we may define more generally a presheaf F on X into C.
Note that we can state definition 2.1.1 in the following way : Let X be a topological space. A
presheaf F on X (into a category C) is a contravariant functor from TX into C.

F : TX −→ C
U 7−→ F (U)

Examples 2.1.1 1) For a topological space, a presheaf CX of R-algebras on X is defined by assigning
to every open U ⊆ X the set of continuous functions U −→ R.

2) Let X be a variety, we previously considered the presheaf of k-algebras OX. For any open U ⊆ X,
OX(U) is the k-algebra of regular functions. If X be an affine variety we have OX(U) = k[U].

3) Let X be a topological space, the formula :

U 7−→
{

Z if U = X
{0} otherwise

defines a presheaf of abelian groups on X.

Although it is possible to define a presheaf of a topological space X into an arbitrary category C, we will
be interested in what follows only in cases where the objects of C are sets (that could have an additional
structure) and the morphisms resV,U are maps (which are morphisms for the extra structure on F (V)
and F (U).

Definition 2.1.2 Let F be a presheaf on X, a subpresheaf G (of F ) is a presheaf on X such that G(U) ⊆
F (U) for every open U ⊆ X, and such that the restriction maps of G are induced by those of F .

Example 2.1.1 If U is an open subset of X, every presheafF on X induces, in an obvious way, a presheaf
FU on U by setting F|U(V) = F (V) for every open subset V of U. This is the restriction of F to U.

Morphisms of presheaves

Definition 2.1.3 Let F and G be two presheaves on X. A morphism of presheaves ψ from F to G
consists of the datum, for all open U of X, of a morphism ψ(U) from F (U) to G(U), so that the diagram

F (V) G(V)

F (U) G(U)

ψ(V)

resV,U resV,U

ψ(U)

commutes for any pair (U, V) of open subsets of X such that U ⊆ V.

Remarks 2.1.2 i) The commutativity of the diagram is written : ψ(V)(s)|U = ψ(U)(s|U), for

every s ∈ F (V).

ii) Morphisms of presheaves can be composed. So that presheaves on the topological space X form a
category, that we will denote by PreShX.

iii) A morphism ψ : F −→ G between two presheaves F and G is an isomorphism if it has a two-sided
inverse i.e, a morphism ϕ : G −→ F such that ψ ◦ ϕ = idG and ϕ ◦ ψ = idF .
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Definition 2.1.4 Assume C has direct limits. The stalk of a presheaf F at a point x ∈ X is

Fx := lim−→
x∈U

F (U)

The direct limit is taken over open neighborhoods of x, and restriction maps between them. Given a
section s ∈ F (U), and a point x ∈ U, we let sx ∈ Fx denote the image of s under the natural morphism

F (U) −→ Fx

s 7−→ sx

An element of the stalk is called a germ.
More generally, if Y ⊆ X is a closed and irreducible subset. Then, we set

FY := lim−→
U∩Y ̸=∅

F (U)

Notation. Let X be a topological space and x ∈ X, we denote by V the set of open neighborhoods of x,
which is filtering for the opposite order to inclusion i.e, for all U, V ∈ V we have

U ≤ V ⇐⇒ V ⊆ U.

Remark 2.1.1 We can identify Fx as the quotient of the set of pairs (U, s), where U ∈ V and where s
is a section of F on U, by the relation of equivalence defined as follows :

(U, s) ∼ (V, t) if and only if there exists an open neighborhood W of x in U ∩V such that s|W = t|W .

Moreover, we can see Fx as the set of sections of F defined in the neighborhood of x. Two sections
belonging to Fx being considered as equal if they coincide in some neighborhood of x.

Example 2.1.2 Let F (U) =
{

continuous functions U −→ R
}

. Then Fx the set of germs of continu-
ous functions at x.

Proposition 2.1.1 Let ψ : F −→ G be a morphism of presheaves, then ψ induces for every point x ∈ X
a morphism ψx : Fx −→ Gx between the stalks, where ψx is defined by ψx(sx) =

(
ψ(U)(s)

)
x

for any
open subset U of X, s ∈ F (U), and x ∈ U.

Proof. If s ∈ F (U) and t ∈ F (V) are such that sx = tx, then there exists an open neighborhood
W of x such that s|W = t|W . So ψ(U)(s)|W = ψ(W)(s|W) and ψ(V)(t)|W = ψ(V)(t|W). Hence(

ψ(U)(s)
)

x
= (ψ(V)(t))x.

Note that if ψ : F −→ G and ϕ : G −→ Z are two morphisms of sheaves we have (ψ ◦ ϕ)x = ψx ◦ ϕx

and (idF )x = idFx
. Moreover, ψ −→ ψx define a functor from the category of sheaves over X to the

category C.

Definition 2.1.5 Let ψ : F −→ G be a morphism of presheaves

i) We say that ψ is injective if for any open subset U of X, ψ(U) : F (U) −→ G(U) is injective.

ii) We say that ψ is surjective if for all x ∈ X, ψx : Fx −→ Gx is surjective.
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2.1.2 Sheaves

Definition 2.1.6 We say that a presheaf F is a sheaf if we have the following properties :

i) (Uniqueness) Let U be an open subset of X, s ∈ F (U),
{

Ui

}
i∈I

a covering of U by open subsets
Ui. If s|Ui

= 0 for every i ∈ I, then s = 0.

ii) (Gluing axiom) If U =
⋃

i∈I Ui, and if si ∈ F (Ui) is a collection of sections matching on the
overlaps; that is, they satisfy

si|Ui∩Uj
= sj|Ui∩Uj

for all i, j ∈ I, then there exists a section s ∈ F (U) so that s|Ui
= si, for all i ∈ I

Remarks 2.1.3 1) When F is a presheaf of groups or of an algebraic structure that is in particular a
group, we can replace i) by : for all s, t ∈ F (U) such that for i ∈ I, s|Ui

= t|Ui
then s = t.

2) The section s in ii) is unique by condition i).

Examples 2.1.2 1) Let X be a topological space and F : U 7−→ C0(U, R) the correspondence that
assigns to U the R-algebra of continuous maps from U to R, then F a sheaf of R-algebras over X.

2) In example 2.1.1, if moreover, F is a sheaf then F|U is still a sheaf.

Morphisms of sheaves

Definition 2.1.7 A morphism of sheaves is just a morphism of the underlying presheaves.

Remarks 2.1.4 1) The sheaves of X form a full subcategory ShX of the category of the presheaves on
X.

2) The notions injective, surjective and isomorphism for sheaves are defined in the same way as for
presheaves.

Lemma 2.1.1 Let X be a topological space and let U be an open subset of X.

i) Let F be a sheaf on X and let s, t ∈ F (U) be two sections such that sx = tx for every x ∈ U.
Then s = t.

ii) Let F , G be presheaves on X and let ψ, ϕ : F −→ G be morphisms of presheaves on X such that
Fx = Gx for every x ∈ X. If G is a sheaf, then F = G.

Proof. i) Let x ∈ U, since sx = tx, there exists an open subset Wx of U containing x such that
s|Wx

= t|Wx
. Since (Wx)x is an open covering of U, according to condition i) in definition 2.1.6, it

comes that s = t.

ii) Let W be an open subset of X and let s ∈ F (W). We need to prove that s has the same image
under the maps ψ(W) and ϕ(W), let t = ψ(U)(s) and l = ϕ(U)(s). For all x ∈ W, we have
tx = ψx(sx) = ϕx(sx) = lx. Since G is a sheaf, then by i) we get that t = l.

In what follows, we consider (pre)sheaves of objects with algebraic structures which in particular are
groups.

Proposition 2.1.2 Let ψ : F −→ G be a morphism of sheaves. Then ψ is injective if and only if
ψx : Fx −→ Gx is injective for every x ∈ X.
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Proof. Suppose ψ is injective. Let x ∈ X and sx ∈ Fx such that ψx(sx) = 0, where s ∈ F (U) and U
is an open neighborhood of x, so

(
ψ(U)(s)

)
x
= 0. Then, there exists an open neighborhood W of x such

that ψ(U)(s)|W = 0 or that ψ(W)(s|W) = 0. From the injectivity of ψ it comes that s|W , thus sx = 0.

Conversely, suppose that for all x ∈ X, ψx is injective, we fix an open subset V of X and s ∈ F (V)
such that ψ(V)(s) = 0, locally we have, for all x ∈ V, ψx(sx) =

(
ψ(U))(s)

)
x
= 0, it comes from local

injectivity, that for all x ∈ V, sx = 0. Hence s = 0.

Remark 2.1.2 Proposition 2.1.2 gives a local characterization of the injectivity.

Theorem 2.1.1 Let ψ : F −→ G be a morphism of sheaves. The following assertions are equivalent :

i) ψ is an isomorphism.

ii) For every x ∈ X, ψx : Fx −→ Gx is an isomorphism.

iii) ψ is both injective and surjective.

Proof. i) ⇒ ii) Let ϕ be the inverse morphism of ψ. Plainly, for every x ∈ X, we have ϕx ◦ ψx = idFx

and ψx ◦ ϕx = idGx
. So ψx is an isomorphism.

ii)⇒ iii) Immediate, according to proposition 2.1.2 and definition 2.1.5 ii)
iii) ⇒ i) We will construct the inverse ϕ of ψ. Let W be an open subset of X and t ∈ G(W), for
every x ∈ W, there exists Ux an open neighborhood of x and sx ∈ F (Ux) such that tx = ψx(sx

x) =(
ψ(Ux)(sx)

)
x
. Hence there exists Vx ⊆ Ux ∩W neighborhood of x such that t|Vx

=
(
ψ(Vx)(sx

|Vx
)
)
|Vx

.

If y ∈ W, then ψ(Vx ∩ Vy)(sx
|Vx∩Vy

) = ψ(Vx ∩ Vy)(s
y

|Vx∩Vy
), so sx

|Vx∩Vy
= s

y

|Vx∩Vy
, as the family

(Vx)x∈U forms a covering of U, then (sx)x rises to a section s of F on U, and we have ψ(U)(s) = t, the
uniqueness of s follows from the injectivity of ψ. We set ϕ(U)(t) = s, then ϕ is the inverse of ψ.

Sheafification

In this paragraph, we answer the following question : How to build a sheaf from a presheaves?

Definition 2.1.8 LetF be a presheaf on a topological space X. We call associated sheaf withF any sheaf
F † equipped with a morphism of presheaves β : F −→ F † satisfying the following universal property :
For any morphism of presheaves ψ : F −→ G, where G is a sheaf, there exists a unique morphism of
sheaves ψ : F † −→ G such that the following diagram is commutative :

F G

F †

ψ

β
ψ

Remark 2.1.3 The uniqueness of F † when it exists is an immediate consequence of the universal prop-
erty.

Proposition 2.1.3 Let F be a presheaf on a topological space X. Then the sheaf F † associated with F
exists and is a unique up to isomorphism. Moreover, using the above notation, all x ∈ X, the induced
morphism β : Fx −→ F †

x is an isomorphism.

Proof. Let F be a presheaf on X. Consider Z := ⨿x∈X Fx (disjoint union) and consider the map
π : Z −→ X defined by : for all sx, π(sx) = x. For any open V of X and s ∈ F (V), let πs be the map
πs : V −→ X defined by πs(x) = sx. Note that π

(
πs(x)

)
= x i.e π ◦ πs = idV (πs is a section and π
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is a retraction). We now endow Z with the topology which makes all maps πs : V −→ Z, V open subset
of X and s ∈ F (V), continuous.
For any open subset V of X, we define F †(V) := {g : V −→ Z/g continuous and π ◦ g = idV} it is
the set of sections of Z on V.

∗ For every W ⊆ V, the restriction F †(V) −→ F †(W) is the usual restriction, i.e g −→ g|W . In

particular F † is a presheaf.

∗ Condition i) in definition 2.1.6 is immediate.

∗ If (Wj)j is a covering of V and gj ∈ F †(Wj) are such that for all i, j, gi|Wi∩Wj
= gj|Wi∩Wj

, then

as the gj are continuous, and coincide on the intersections, there exists g : V −→ X which is
continuous such that for all j, g|Wj

= gj. Moreover g is a section in fact : for all x ∈ V, there is

some j such that x ∈Wj, π ◦ g(x) = π(g(x)) = π(gj(x)) = x.

F †is a sheaf.

∗ Definition of β : F −→ F † : For any open subset V of X and s ∈ F (V), we define β(V)(s) :=
πs ∈ F †(V).

∗ Compatibility with restrictions : let W ⊆ V two open subsets of X, s ∈ F (V) and x ∈ W, we
have β(V)(s)|W(x) = πs(x) = sx = (s|W)(x) = πs|W(x). So β(V)(s)|W = β(W)(s|W).

∗ Let G be a sheaf, and ψ : F −→ G be a morphism of presheaves. We cut a section g of F †(V) into
small sections (sections of F ) on a covering Wj of V, then by sending them to the G(Wj), then we

stick back into G. Sections of F † are obtained by gluing sections of F , so Fx = F †
x .

Remark 2.1.4 If F is a sheaf, it follows from the universal property that F ≃ F †.

Example 2.1.3 (Constant sheaves) Let A be a group (or a ring, an algebra,. . .), then

U 7−→
{

A if U ̸= ∅

{0} otherwise

is a presheaf and the associated sheaf is called the constant sheaf associated to A. We denoted by A. For
any x ∈ X, we have Ax = A.

Subsheaves and Quotient sheaves

Throughout, we fix a category of objects that have an algebraic structure which are in particular groups,
say e.g., C = Gp or R-Mod.

Subsheaves

Definition 2.1.9 Let F and G be two sheaves on X, we say that F is a subsheaf of G, if for any open
subset U of X, F (U) ⊆ G(U) and such that we have compatibility with the restrictions induced from
F and G, i.e., For every open subsets U ⊆ V of X, the following diagram is commutative :

F (V) G(V)

F (U) G(U)

resV,UresV,U

Remark 2.1.5 F is a subsheaf of G if, the canonical injection ı : F −→ G is a morphism of sheaves.
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Definition 2.1.10 Let ψ : F −→ G a morphism of presheaves on X. We define the presheaf ker(ψ) by
the formula :

U −→ ker(ψ(U))

for any open subset U of X. ker(ψ) is said to be the kernel of ψ, it’s a subpresheaf of F .

Using the notation of definition 2.1.10, one can easily see that ψ is injective if and only if its kernel is the
trivial presheaf.

Lemma 2.1.2 Let ψ : F −→ G be a morphism of sheaves. Then the presheaf ker(ψ) is a sheaf.

Proof. Let U be an open of X , (Uj)j be a covering of U and sj ∈ ker(ψ(Uj)) such that for i, j, si|Ui∩Uj
=

sj|Ui∩Uj
. Since sj ∈ F (Uj), then (sj)j rises to a section s of F over U, but for every x ∈ U, there exists

j such that x ∈ Uj, and we have
(
ψ(U)

)
(s)x =

(
ψ(Uj)

)
(sj)x = 0. So ψ(U)(s) = 0. Hence

s ∈ ker(ψ(U)). On the other hand, if s ∈ ker(ψ(U)) such that for every j, s|Uj
= 0, then s = 0

(because s ∈ F (U) and F is a sheaf).

Definition 2.1.11 Let ψ : F −→ G be a morphism of presheaves on X. We define the im(ψ) presheaf
by the formula :

U 7−→ im
(
ψ(U)

)

for any open set U of X. One can easily see that im(ψ) is indeed a subpresheaf of G. We say that im(ψ)
is the image presheaf of ψ.

Remark 2.1.6 Note that the presheaf im(ψ) is not in general a sheaf.

Definition 2.1.12 Let ψ : F −→ G be a morphism of sheaf. The sheaf associated with the image
presheaf called the image sheaf of ψ is denoted Im(ψ). In the same way we define the cokernel sheaf and
that we denote by Coker(ψ).
Note that in general

(
Im(ψ)

)
(U) ̸= Im

(
ψ(U)

)
. The first term is section of the sheaf Im(ψ) on the

open set U, while the second is the image of the morphism ψ(U). More precisely, we have :

Theorem 2.1.2 Let ψ : F −→ G be a morphism of sheaves. Then, the following assertions hold :

i) For any open subset U of X, and s ∈ G(U). s ∈ (im(ψ)(U)) if and only if there exists an open
covering (Uj) of U and tj ∈ F (Uj) such that, for any j, s|Uj

= ψ(Uj)(tj).

ii) ψ is surjective if and only if, for any open subset U of X and s ∈ G(U), there exists an open
covering (Uj)j of U and tj ∈ F (Uj) such that, for any j, s|Uj

= ψ(Uj)(tj).

iii) ψ is surjective if and only if G = im(ψ).

Proof. i) Im(ψ) is a the sheaf associated with presheaf U 7−→ Im
(
ψ(U)

)
, hence the result.

ii) If ψ is surjective, let U an open subset of X and s ∈ G(U), for all x ∈ U, by theorem 2.1.1, the
map ψx is surjective. So there exists tx ∈ Fx such that ψx(tx) = sx. Therefore, there there exists
an open neighborhood Ux ⊆ U, and tx ∈ Ux such that s|Ux

= ψ(Ux)(tx). The covering (Ux)x∈U

answers the question. Conversely, let x ∈ X and s ∈ G(U). Let (Uj)j be covering of U and
tj ∈ F (Uj) such that s|Uj

= ψ(Uj)(tj) for all j. Since F is a sheaf then there is t ∈ F (U) such

that t|Uj
= tj for all j. In particular, for every j such that x ∈ Uj, sx = (s|Uj

)x =
(
ψ(Uj)(tj)

)
x
=

ψx(tx). Hence ψ is surjective.

iii) Immediate from i) and ii).
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Quotients sheaves

Assume that F is a subsheaf of the sheaf G. Then we can define a presheaf whose sections over U are the
quotient G(U)/F (U). The restriction maps of F and G are compatible the inclusions F (U) ⊆ G(U)
and hence pass to the quotient G(U)/F (U). This presheaf, i.e., U 7−→ G(U)/F (U), is called quotient
presheaf of G by F .

Definition 2.1.13 The quotient sheaf G/F is the sheafification of the quotient presheaf of G by F .

Proposition 2.1.4 Let F be a subsheaf of G, x ∈ X. Then (G/F )x = Gx/Fx.

Proof. G/F is the sheaf associated with the presheaf U 7−→ G(U)/F (U) whose stalks at x is clearly
isomorphic to Gx/Fx.

Continuous maps and sheaves

So far, we have only talked about sheaves defined on a single topological space. We are going to study in
this paragraph some transformations of sheaves via continuous mappings between topological spaces.
Let f : X −→ Y be a continuous map of topological spaces. We will define the pushforward and pullback
functors for presheaves and sheaves.

Pushforward

Definition 2.1.14 Let f : X −→ Y be a continuous map between topological spaces. LetF be a presheaf
on X. We define the pushforward of F by the formula :

f∗F (V) = F
(

f−1(V)
)

for any open V ⊆ Y.
Given opens W ⊆ V of Y the restriction map is given by the commutativity of the diagram

f∗F (V) F
(

f−1(V)
)

f∗F (W) F
(

f−1(W)
)

res
f−1(V), f−1(W)

It is clear that this defines a presheaf on Y.

Remark 2.1.7 The construction is clearly functorial in the presheaf F and hence we obtain a functor

f∗ : PreShX −→ PreShY

F 7−→ f∗F
Proposition 2.1.5 Let f : X −→ Y be a continuous map and F be a sheaf on X. Then f∗F is a sheaf
on Y.

Proof. This immediately follows from the fact that if (Wj)j is an open covering of some open subset W

of Y then, ( f−1(Wj))j is an open covering of the open f−1(W). Consequently, we obtain a functor

f∗ : ShX −→ ShY

This is compatible with composition in the following strong sense :

Lemma 2.1.3 Let f : X −→ Y and g : Y −→ Z be continuous maps of topological spaces. Then, the
functors (g ◦ f )∗ and g∗ ◦ f∗ are equal.

Proof. Immediate.
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Pullback

We saw in example 2.1.1 that if F is a sheaf on X, then for any open subset U of X F|U is a sheaf on U.
Now if we take an arbitrary subset Z of X. the restriction of F on Z is not necessarily a sheaf because an
open set W of Z is not necessarily an open set of X.
Next definition gives the meaning of F|Z, when Z is a closed subset of X. This will be generalized in
definition 2.1.16 to give the meaning of the pullback presheaf defined by a continuous map. For this
purpose, note that if f : X −→ Y is a continuous map between topological spaces and V is an open of Y,
then the family (U) f (U)⊆V consisting of all open subsets U of X satisfying f (U) ⊆ V, is an inductive
system for the inverse of the inclusion relation.

Definition 2.1.15 If ı : Z −→ X is the inclusion of a closed subset Z of X, and V is an open subset of
Z. We define the restriction F|Z as the sheafification of the following presheaf

V 7−→ lim−→
V⊆U

F (U)

Definition 2.1.16 Let f : X −→ Y be a continuous map between topological spaces and G be a presheaf
on Y. We define the pullback presheaf of G by the formula :

fpG(U) = lim−→
f (U)⊆V

G(V).

Remark 2.1.8 In the language of categories. The pullback presheaf fpG of G is defined as the left adjoint
of the pushforward f∗ on presheaves. In other words, fpG will be a presheaf on X such that

MorPreShX
( fpG,F ) = MorPreShY

(G, f∗F )

Proposition 2.1.6 Let f : X −→ Y be a continuous map between topological spaces, x be a point of X
and G be a presheaf on Y . Then, up to an isomorphism, we have ( fpG)x = G f (x).

Proof.
( fpG)x = lim−→

x∈U

fpG(U)

= lim−→
x∈U

lim−→
f (U)⊆V

G(V)

= lim−→
f (x)∈V

G(V)

= G f (x)

Definition 2.1.17 Let f : X −→ Y be a continuous map between topological spaces and G be a sheaf
on Y. The pullback sheaf f−1G is defined by the formula :

f−1G = ( fpG)†

f−1G is also called the inverse image along the map f .

Remark 2.1.9 f−1 defines a functor :

f−1 : ShY −→ ShX

G 7−→ f−1G

The pullback f−1 is a left adjoint of pushforward on sheaves.

MorShX
( f−1G,F ) = MorShY

(G, f∗F ).

For more details see [9, 1.12.1, p.38].
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Example 2.1.4 Let F be a sheaf on X and x ∈ X. Let ı : {x} −→ X be the inclusion map, then
ı−1F = Fx

Lemma 2.1.4 Let f : X → Y be a continuous map between topological spaces, x ∈ X and G be a sheaf
on Y, then the stalks ( f−1G)x and G f (x) are equals.

Proof. This a combination of proposition 2.1.3 and proposition 2.1.6.

Lemma 2.1.5 Let f : X −→ Y and g : Y −→ Z be continuous maps of topological spaces. The functors
(g ◦ f )−1 and f−1 ◦ g−1 are canonically isomorphic. Similarly, (g ◦ f )p = fp ◦ gp, for presheaves.

Proof. This follows from the fact that adjoint functors are unique up to unique isomorphism, and Lemma
2.1.3.

Exact sequences of sheaves

In this paragraph, we will define what is an exact sequence of sheaves, and we will study some of their
properties. For this we will restrict our study to the case of sheaves of groups.

Definition 2.1.18 A sequence of presheaves with presheaves morphisms

· · · F j−1 F j F j+1 · · ·ψj−1 ψj ψj+1

is said to be exact if for all i, Im(ψj−1) = ker(ψj). In particular the following exact sequence is call a
short exact sequence when it is exact :

0 F G H 0

Remark 2.1.10 Let ψ : F −→ G be a morphism of sheaves. Then,

i) ψ is injective if and only if

0 F Gψ

is an exact sequence.

ii) ψ is surjective if and only if

F G 0
ψ

is an exact sequence.

Example 2.1.5 Let X = C, and OX the sheaf of holomorphic functions and consider the map d :

OX −→ OX, sending f (z) to f
′
(z). There is an exact sequence

0 CX OX OX 0
d

Indeed, this follows by the following facts :

∗ A function whose derivative vanishes identically is locally constant, so ker(d) is the constant sheaf
CX.

∗ In small open disks any holomorphic function is a derivative.
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Lemma 2.1.6 Let ψ : F −→ G be a morphism of sheaves on X. Then for any x ∈ X, we have
(kerψ)x = ker(ψx) and (imψ)x = im(ψx).

Proof. Let sx ∈
(
ker(ψ)

)
x
, and let U an open neighborhood of x such that s ∈

(
ker(ψ)

)
(U) =

ker
(
ψ(U)

)
, so ψ(U)(s) = 0, hence ψx(sx) =

(
ψ(U)(s)

)
x
= 0, so sx ∈ ker(ψx). Conversely, if

ψx(sx) = 0, then
(
ψ(U)(s)

)
x
= 0 (U is an open neighborhood of x and s ∈ F (U)), then there exists

an open neighborhood W ⊆ U of x such that ψ(U)(s)|W = 0, i.e., ψ(W)(s|W) = 0 and therefore

s|W ∈ ker
(
ψ(W)

)
whence sx = (s|W)x ∈

(
ker

(
ψ)

)
x
. One can proceed similarly for the image.

Theorem 2.1.3 A sequence of sheaves with sheaves morphisms

· · · F j−1 F j F j+1 · · ·ψj−1 ψj ψj+1

is an exact sequence if and only if for any x ∈ X

· · · F j−1
x F j

x F j+1
x · · ·ψ

j−1
x ψ

j
x ψ

j+1
x

is an exact sequence.

Proof.

· · · F j−1 F j F j+1 · · ·ψj−1 ψj ψj+1

is an exact sequence if and only if, for any j, im(ψj−1) = ker(ψj) if and only if, for any x ∈ X and for

any j, im(ψ
j−1
x ) = ker(ψ

j
x) if and only if,

· · · F j−1
x F j

x F j+1
x · · ·ψ

j−1
x ψ

j
x ψ

j+1
x

is an exact sequence.

Proposition 2.1.7 Let F be a subsheaf of G on X. Then

0 F G G/F 0

is an exact sequence.

Proof. By proposition 2.1.4, for any x ∈ X,

0 Fx Gx Gx/Fx = (G/F )x 0

is an exact sequence. Hence the result.

Remark 2.1.11 If

0 F G H 0

is an exact sequence over X, then F can be identified with a sub-sheaf of G and G/F ≃ H.

Corollary 2.1.1 Let ψ : F −→ G be a morphism of sheaves. Then

1) Im(ψ) ≃ F/ker(ψ).

2) Coker(ψ) ≃ G/Im(ψ).
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Proof. 1) It is easy to check that for all x ∈ X, we have

0
(
ker(ψ)

)
x

Fx im(ψ)x 0

It follows by theorem 2.1.3, that

0 ker(ψ) F im(ψ) 0

is an exact sequence. Also by remark 2.1.11 we have im(ψ) ≃ F/ker(ψ)

2) Similar to 1).

2.1.3 Glueing sheaves

In this section, we fix a topological space X, and we consider an open covering (Ui)i∈I of X with a sheaf
Fi on each subset Ui. Our goal is to "glue" the Fi together, that is we search for a global sheaf F such
that F|Ui

= Fi for all i ∈ I. For this, we consider the following notion:

Notation. i) For i, j ∈ I, we denote by Uij the intersection Ui ∩Uj.

ii) For i, j, k ∈ I, we denote by Uijk the intersection Ui ∩Uj ∩Uk.

Definition 2.1.19 A Gluing Data consists of a family of sheaves Fi over Ui and a family of morphisms
δij : Fi|Uij

−→ Fj|Uij
such that

i) δii = idFi
.

ii) δji = δ−1
ij .

iii) δik = δjk ◦ δij on Uijk.

A morphism of gluing data (Fi, δij) −→ (Gi, ηij) is a family of morphism of sheaves ψi : Fi −→ Gi

such that the following diagram

Fi Gi

Fj Gj

δij

ψi

δij

ψj

is commutative.

Theorem 2.1.4 (Gluing sheaves) There exists a sheaf F on X, unique up to ismorphism such that there
are isomorphisms θi : FUi

−→ Fi satisfying

θj = δij ◦ θi.

Proof. Let W be an open subset of X. We write Wi = Ui ∩W, and Wij = Uij ∩W. We are going
to define the sections of F over W by gluing sections of the F ′i s over W ′i s along the W ′ijs using the

isomorphisms δij. We define

F (W) :=
{
(si)i∈I | δji(si|Wij

) = δj|Wij
(sj|Wij

)
}
⊆∏

i∈I

Fi(Wi). (2.1)
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The δij’s are morphisms of sheaves and therefore are compatible with all restrictions maps (see definition
2.1.3). So if V ⊆W is another open subset we have

δij(si|Vij
) = sj|Vij

.

Because of this, the defining condition (2.1) is compatible with componentwise restrictions, and they can
therefore be used as the restriction maps in F . We get then a presheaf on X. To finish the proof we have
to complete the following steps:

∗ First step : We need to establish an isomorphisms θi : F|Ui
−→ Fi. To avoid getting confused

by the indices, we shall work with a fixed index j ∈ I. Suppose W ⊆ Uj is an open set. We have
W = Wj, and projecting from the product ∏i∈I Fi(Wi) onto the component

Fj(W) = Fj(Wj)

gives us a map θj : F|Uj
−→ Fj. Moreover, θj

(
(si)i∈I

)
= sj. The situation is summarized in the

following commutative diagram

F (W) ∏i∈I Fi(Wi)

Fj(W)

πj
θj

Now, we want to show that θj’s give the desired isomorphisms. We note that on the restrictions Wjj
′ , the

requirement in the proposition, that
θj
′ = ηj

′
j ◦ θj

is fulfilled. This follows directly from the (2.1) since we have

sj|W
jj
′ = δjj

′ (sj
′ |W

jj
′
).

∗ θj is surjective : Let α be a section of Fj(W) over some W ⊆ Uj, and let s = (δij(α|Wij
))i∈I . Then

s satisfies (2.1) and is therefore an element F (W). As δjj(α|Wjj
) = α by the first gluing request,

the element s projects to the section α of Fj.

∗ θj is injective : Suppose that sj = 0, then si|Wij
= δij(sj) = 0 for each i ∈ I. Now Fj is a sheaf,

and the ((Wij))i∈I is an open covering of Wj. So s = 0.

∗ Final step : We have to show F is a sheaf. Let
{

Wj

}
j∈I

be an open covering of W ⊆ U, and

sj ∈ F (Wj) is a bunch of sections matching on the intersections Wjj
′ . Since F|Ui∩W is a sheaf

patch together to give sections si in FUi∩W) matching on the overlaps Uij ∩W. This last condition

means that δij(si) = sj. By definition (si)i ∈ I, then is a section in F (W) restricting to si. Hence
the result.
The Gluing axiom (see definition 2.1.6) is easier : Let s = (si)i∈I in F (W), and a covering
L =

{
Vj

}
j∈J

of W such that s|Vj
= 0 for all j ∈ J, then also s|Vj∩Wi

= 0, and since
{

Vj ∩Wi

}
j∈J

forms a covering of Wi, we must have s|Wi
= 0 as well, since FWi

= Fi is a sheaf. But from the
(2.1) we thus see that s = 0.
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2.2 Spectrum of a ring and ringed spaces

2.2.1 Spectrum of ring

In this section, for a commutative ring R, we will define Zariski topology on the spectrum Spec(R) of R
and study some of the basic properties of this topological space. One can already notice the analogy with
Zariski topology defined on affine algebraic sets, indeed, this last one is fully inspired from the first one
in an attempt to make our work on varieties free from the assumption that the base field k is algebraically
closed (even free from working on varieties defined only on field). We define then and study some basic
facts concerning ringed spaces for which we make intensive call to sheaf theory. All this is made to
prepare necessary tools to define schemes of rings which will generalize the notion of (classical) algebraic
sets.

Definition 2.2.1 Let R be a commutative ring. The set of all prime ideals of R is called the spectrum of
R. It will be denoted by Spec(R).

Remark 2.2.1 Plainly, the set of all maximal ideals of R is a subset of Spec(R), it is denoted by Spm(R).
By Krull theorem, for any (nonzero) commutative ring R, then R has a maximal ideal, so Spec(R) is
nonempty.

Examples 2.2.1 1) If R be a field, then Spec(R) = {0}.

2) Spec(Z) = {pZ | p prime number } ∪ {0}.

3) By corollary 1.1.1, if R is an algebraically closed field, then for any positive integer n, Spec(R[T1, . . . , Tn]) =
{(T1 − a1, . . . , Tn − an)| where ai ∈ R}

Notation. Let R be a ring and S be a subset of R.

∗ We define
V(S) = {P ∈ Spec(R) | S ⊆ P}.

∗ For any f ∈ R, we denote by D( f ) the complement of V({ f }) i.e,

D( f ) = {P ∈ Spec(R) | f /∈ P}.

Remark 2.2.2 One can easily see that V(1) = ∅ and V(0) = Spec(R).

Proposition 2.2.1 Let R be a ring, S, M be subsets of R, I, J be ideals of R and f ∈ R. Then, the
following statements hold :

1) If S ⊆ M, then V(M) ⊆ V(S).

2) Let (S) be the ideal generated by S, then we have V(S) = V((S)).

3) V(J) = V(rad(J)).

4) V(I) = ∅ if and only if I = R.

5) V(I) = V(J) if and only if rad(I) = rad(J).

6) V(I) ∪V(J) = V(I ∩ J) = V(I J).

7) If {Ij} is a family of ideals of R, then

⋂

j

V(Ij) = V(
⋃

j

Ij).
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Proof. 1) Clear.

2) Plainly, we have V((S)) ⊆ V(S). Conversely, let P ∈ V(S) and g ∈ (S), we need to show that
g ∈ P. We can write g = ∑

r
j=1 f jhj, f j ∈ S, hj ∈ R. Since S ⊆ P, then for all j ∈ {1, . . . , r},

f j ∈ P. So f jhj ∈ P. Thus, ∑
r
j=1 f jhj ∈ P which means that g ∈ P.

3) Since J ⊆ rad(J), then clearly V(rad(J)) ⊆ V(J). Conversely, P ∈ V(J), then we have J ⊆ P,
so rad(J) ⊆ rad(P) = P. Thus P ∈ V(rad(J)).

4) As seen above, we have V(R) = ∅. Suppose that I ̸= R, then there exists a maximal idealM of
R such that I ⊆ M. By 1) we have V(M) ⊆ V(I). SinceM is prime, thenM ∈ V(M). So
V(I) ̸= ∅.

5) If rad(I) = rad(J), then by 3), V(I) = V(J). Conversely, suppose that V(I) = V(J), then⋂
I⊆P P =

⋂
J⊆P P, which means that rad(I) = rad(J).

6) We have I ∩ J ⊆ I, J, so by 1) V(I) ∪ V(J) ⊆ V(I ∩ J). Conversely, let P ∈ V(I ∩ J), i.e.,
I ∩ J ⊆ P. Since P is prime, then necessarily I ⊆ P or J ⊆ P, so P ∈ V(I) ∪ V(J). The rest is
clear.

7) Note that P ∈ ⋂
j V(Ij) if and only if P contains all Ij if and only if P contains

⋃
j Ij if and only if

P ∈ V(
⋃

j Ij).

Remark 2.2.3 Proposition 2.2.1 shows that we can consider a topology on Spec(R) by taking the subsets
V(S) to be the closed subsets of Spec(R).

Definition 2.2.2 Let R be a commutative ring. The topology on Spec(R) whose closed sets are the sets
V(S), where S describes all subsets of R, is called the Zariski topology of Spec(R). For f ∈ R, D( f ) is
plainly an open subset of Spec(R). These open sets are called the principal open subsets of Spec(R).

Remarks 2.2.1 i) Let P ∈ Spec(R), then P is a closed point of Spec(R) (i.e., {P} is a closed subset
of Spec(R)) is closed if and only P is a maximal ideal of R.

ii) (0)(= {0}) ∈ Spec(R) if and only if R has a nonzero divisors.

Proposition 2.2.2 For a commutative ring R, the following statements hold :

1) D( f ) = ∅, if and only if f ∈ N(R), the nilradical of R.

2) D( f ) = Spec(R), if and only if f ∈ U(R), the group of invertible elements ofR.

3) For all f , g ∈ R, D( f g) = D( f ) ∩ D(g).

4) For every m ∈ N, D( f m) = D( f ).

Proof. 1) Clearly, if D( f ) = ∅, then f ∈ P for all prime ideals P of R, thus f ∈ N(R). The
converse is straightforward.

2) If D( f ) = Spec(R), then f is not in any prime ideal of R, and so it is not in any maximal ideal.
Since every non-unit is contained in some maximal ideal, f must be a unit. The converse is clear.

3) and 4) Clear.

Theorem 2.2.1 The sets D( f ) form a basis for the Zariski topology.

Proof. Indeed, to show for any Ideal J of R we have Spec(R) \V(J) =
⋃

f∈J D( f ).
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Notation. For any Y ⊆ Spec(R), let j(Y) :=
{

f ∈ R |Y ⊆ V( f )
}

. One has j(Y) =
⋂

P∈Y P. In
particular, j(Y) is a radical ideal of R.

Lemma 2.2.1 1) If Y1 and Y2 are subsets of Spec(R) such that Y1 ⊆ Y2, then j(Y2) ⊆ j(Y1).

2) If (Yt)t∈T is a family of subsets of Spec(R), then j(
⋃

t∈T Yt) =
⋂

t∈T j(Yt).

3) For every subset Y of Spec(R), we have Y ⊆ V(j(Y)).

4) For every subset S of R, we have S ⊆ j(V(S)).

Proof. 1) and 2) clear.

3) Let P ∈ Y. Since j(Y) =
⋂

P∈Y P ⊆ P, then P ∈ V(j(Y)).

4) Clear.

The following result gives a characterization of the closure of a subset of Spec(R).

Proposition 2.2.3 Let Y be a subset of Spec(R). Then Y = V(j(Y)).

Proof. By lemma 2.2.1 3) Y ⊆ V(j(Y)), so Y ⊆ V(j(Y)). Conversely, it suffices to show that any
closed set containing Y must contain V(j(Y)). If Y ⊆ V(S), then for any P ∈ Y, we have S ⊆ P, and
this yields S ∩P∈Y P = j(Y). So V(j(Y)) ⊆ V(S).

Remark 2.2.4 Let X be a topological space, if X is Hausdorff, then for every x ∈ X, we have {x} is
closed. So, X = Spec(Z) is not Hausdoroff. Indeed, we have j({0}) =

⋂
P∈X P and by proposition

2.2.3, we have {0} = V(j({0})) = V(0) = Spec(Z). So {0} is not closed.

In the chapter 1, we gave a one-to-one correspondence between the set of algebraic sets of An and the set
of radical ideals of k[T1, . . . , Tn], when k is algebraically closed. This was defined by the maps X 7→ I(X)
and J 7→ Z(J). The following result gives a similar correspondence when replacing An by Spec(R) and
k[T1, ..., Tn] by R.

Theorem 2.2.2 Let R be a commutative ring. Then

i) For every ideal I of R, we have j(V(I)) = rad(I).

ii) The maps S −→ V(S) and Y −→ j(Y) induce bijections, inverse one of the other, between the set
of radical ideals of R and the set of closed subsets of Spec(R).

Proof. i) We have j(V(I)) =
⋂

P∈V(I) P =
⋂

I⊆P P = rad(I).

ii) This follows directly from i) and proposition 2.2.3.

Proposition 2.2.4 1) Let ψ : R −→ A be a homomorphism of rings. Then ψ induces a continuous
map ψ∗ : Spec(A) −→ Spec(R) given by ψ∗(Q) = ψ−1(Q).

2) Let J be an ideal of R and π : R −→ R/J be the canonical homomorphism. Then π∗ is a
homeomorphism from Spec(R/J), to the subspace V(J) of Spec(R).

Proof. 1) It is clear that for any Q ∈ Spec(A), ψ−1(Q) ∈ Spec(R). One can easily see that

(ψ∗)−1(V(J)) = V(ψ(J)).

This shows that ψ∗ is continuous.
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2) We know that the prime ideals of R/J are the ideals I/J where I is a prime ideal of R containing J.
The rest of the proof is straightforward.

Corollary 2.2.1 Let R be a commutative ring, then Spec(R) is homeomorphic to Spec(R/N(R)) where
N(R) denotes the nilradical of R.

Proof. It suffices to see that V(N(R)) = Spec(R).

Remark 2.2.5 Let S be a multiplicatively stable subset of R\{0}. By [3, Proposition, 3.11, p.41], there
is one-to-one correspondence between prime ideals of S−1R, and prime ideals of R disjoint from S. One
deduce then the following result.

Proposition 2.2.5 Let Ω := {P ∈ Spec(R) | P ∩ S = ∅}, then the map θ : Ω −→ Spec(S−1R),
defined by θ(P) = S−1P is a homeomorphism.

Proposition 2.2.6 Let R be a commutative ring. Then Spec(R) is compact.

Proof. It suffices to show that any cover of Spec(R) by basic open sets, has a finite sub-cover. Assume
Spec(R) ⊆ ⋃

t∈T D( ft) and let J := ({ ft, t ∈ T}), be the ideal of R generated by the ft. For any
P ∈ Spec(R), we have P ∈ D( ft) for some t ∈ T. Thus, J cannot be contained in any prime ideal of R,
and so cannot be contained in any maximal ideal of R. Write 1 = ∑

r
j=1 hj f j. For any P ∈ Spec(R), we

have 1 /∈ P, so ftj
/∈ P, for some j ∈ {1, . . . , r}. Hence f ∈ D( ftj

). Therefore, Spec(R) ⊆ ⋃r
j=1 D( ftj

).

Corollary 2.2.2 Let R be a commutative ring and let f ∈ R. Then D( f ) is compact with respect to the
subspace topology induced from Spec(R).

Theorem 2.2.3 Let R be a Noetherian ring, then Spec(R) is a Noetherian topological space.

Proof. Let
V(J1) ⊇ V(J2) ⊇ · · ·

be a descending chain of closed sets in Spec(R), where Ji are ideals of R, then we have a corresponding
ascending sequence

rad(J1) ⊆ rad(J2) ⊆ · · ·
of ideals of R. Since R is a Noetherian ring, then there exists d ∈ N such that, for all r ≥ d, rad(Jr) =
rad(Jd). It follows that V(Jr) = V(Jd), for all r ≥ d showing Spec(R) is Noetherian.

Irreducibility

We give in this section a characterization of the irreducible closed subsets of Spec(R).

Lemma 2.2.2 Let R be a commutative ring and P be a prime ideal of R. Then V(P) is irreducible in
Spec(R).

Proof. Suppose that V(P) = V(J1) ∪ V(J2), where J1, J2 are ideals of R. Since P ∈ V(P), then
P ∈ V(J1) or P ∈ V(J2). Assume that P ∈ V(J1), i.e., J1 ⊆ P. , then for any Q ∈ V(P), we have
J1 ⊆ P ⊆ Q, so Q ∈ V(J1). Consequently, V(P) = V(J1).

Proposition 2.2.7 Let J be an ideal of R. If V(J) is irreducible, then rad(J) is a prime ideal of R.
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Proof. Let f , g ∈ R with f g ∈ rad(J) and suppose that f , g /∈ rad(J). Then there exist two prime ideals
P, Q such that J ⊆ P, Q with f /∈ P and g /∈ Q. We then have P ∈ V(J)∩D( f ) and Q ∈ V(J)∩D(g)
and clearly V(J)∩D( f ), V(J)∩D(g) are nonempty open subset of V(J). Since V(J) is irreducible, by
proposition 1.1.3 we have W :=

(
V(J) ∩ D( f )

)
∩
(
V(J) ∩ D(g)

)
̸= ∅. Let L be the intersection of all

elements of W. We have:
L ⊆ V(J) = V(rad(J)), so rad(J) ⊆ L and L ⊆ D( f )∩D(g) = D( f g), so f g /∈ L which contradicts
the fact that f g ∈ rad(J) ⊆ L. Hence rad(J) is a prime ideal.

Remark 2.2.6 If rad(J) is a prime ideal, by lemma 2.2.2 then V(J) is irreducible.

Proposition 2.2.8 Let Y be a closed subset Y of Spec(R), then Y is irreducible if and only if Y is of the
form Y = V(P) for some ideal P ∈ Spec(R).

Proof. This follows from the above since for any ideal J of R, we have V(J) = V(rad(J)).

Theorem 2.2.4 Let R be a commutative ring. Then Spec(R) is irreducible if and only if N(R) is a
prime ideal of R.

Proof. For any P ∈ Spec(R), we have N(R) ⊆ P, so P ∈ V(N(R)). Thus, Spec(R) = V(N(R)),
hence by remark 2.2.6 Spec(R) is irreducible when N(R) is a prime ideal of R. Conversely, suppose
that Spec(R) is irreducible. Let f g ∈ N(R). By proposition 2.2.2 3) we have D( f g) = D( f ) ∩ D(g),
moreover, if f and g are not nilpotent, then by proposition 2.2.2, D( f ) and D(g) are nonempty. Since
Spec(R) is irreducible then D( f g)(= D( f )∩D(g)) is nonempty. This implies that f g is not nilpotent
a contradiction.

Generic points

Definition 2.2.3 Let X be a topological space, Y be a closed subset of X and x ∈ Y. We say that x is a

generic point for Y if Y is the closure of the singleton {x}, i.e., Y = {x}.

Examples 2.2.2 1) Let P be a prime ideal of R, then P = V(P) and P is the only generic point of
V(P).

2) For an integral domain R, the zero ideal N(R) (= (0)) is prime, and {(0)} = Spec(R). Then
(0) is a generic point of Spec(R).

2.2.2 Ringed spaces

Definition 2.2.4 A ringed topological space is a pair (X,OX) consisting of a space and a sheaf of rings
OX called the structure sheaf.

Examples 2.2.3 1) Let X be a topological space and OX(= C0(., R)) be a sheaf of continuous real
functions on X. Then (X,OX) is a ringed space.

2) Let M be a C∞-manifold, then the sheaf C∞(., R) of smooth functions is a sheaf of rings on M.

Remark 2.2.7 Let (X,OX) be a ringed space and U an open subset of X, then (U,OX|U) is a ringed
space, the structure sheaf OX|U will be denoted simply by OU.

Definition 2.2.5 A morphism of ringed spaces is pair ( f , f ♯) : (X,OX) −→ (Y,OY), where f : X −→
Y is continuous map, and f ♯ : OY −→ f∗OX is a morphism of sheaves of rings on Y.

Remark 2.2.8 For every open subset U of Y :
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1) f ♯(U) : OY(U) −→ OX( f−1(U)) is a ring homomorphism.

2) We have

OY(U) OX( f−1(U))

OY(V) OX( f−1(V))

f ♯(U)

resU,V
res

f−1(U), f−1(V)

f ♯(V)

for any open subsets V ⊆ U of Y

3) Let’s denote the set of morphisms of ringed spaces from X to Y by Hom((X,OX), (Y,OY)).
Then we have a canonical categorical isomorphism : Hom((X,OX), (Y,OY)) ∼= { f : X −→
Y (a continuous map) and f ♭ : f−1OY −→ OX (a morphism of sheaves) }
(see [9, Lemma 1.45])

Notation. Let ( f , f ♯) : (X,OX) −→ (Y,OY) be a morphism of ringed spaces. We will simply write f
instead of ( f , f ♯).

Examples 2.2.4 1) Let ψ : U −→ V be a morphism of varieties, then ψ induces a canonical mor-
phism of ringed spaces

(U,OU) −→ (V,OV)

where OU (respectively OV) is the sheaf of regular functions on U (resp V).
We take f = ψ : U −→ V to be the corresponding continuous map and f ♯ : OV −→ f∗OU to be
defined by : For each open set W ⊆ V

OV(W) −→ OU( f−1(W))
h 7−→ f ♯(h) := h ◦ ψ.

2) Let (X,OX) be a ringed space, W ⊆ X be an open subset and let j : W −→ X be the canonical
injection. Then (j, j♯) : (W,OW) −→ (X,OX) is a morphism of ringed spaces, where for every
open U of X, j♯(U) : OX(U) −→ j∗OW(U)(= OW(U ∩W)) is the restriction morphism.

Remarks 2.2.2 1) Let f : (X,OX) −→ (Y,OY) be a morphism of ringed spaces. For any x ∈ X, f

induces a morphism of the stalks f ♯x : OY, f (x) −→ OX,x

2) Let ( f , f ♯) : (X,OX) −→ (Y,OY), and (h, h♯) : (Y,Oy) −→ (Z,OZ) be morphisms of ringed
spaces. It is clear that h ◦ f is a continuous map and by lemma 2.1.3, we have (h ◦ f )∗ = h∗ ◦ f∗,
then (h ◦ f )∗OX = h∗( f∗OX), since f∗OX is a sheaf on Y then h∗ ◦ f∗OX is a sheaf on Z.

Definition 2.2.6 Let ( f , f ♯) : (X,OX) −→ (Y,OY) and (h, h♯) : (Y,OY) −→ (Z,OZ) be mor-
phisms of ringed spaces. The composition of these morphisms is given by the map h ◦ f and the morphism
of sheaves h♯ given by

OZ h∗OY h∗ f∗OX

We denote this composition of morphisms(of ringed spaces) as follows :

(h, h♯) ◦ ( f , f ♯) = (h ◦ f , f ♯ ◦ h♯).

We get in this way a categoryRS of ringed spaces. An isomorphism of ringed spaces is a morphism which
has an inverse. If X is a ringed space with structure sheaf OX, Z a topological space and f : Z −→ X a
continuous map, then f−1OX can be considered as a structure sheaf on Z. In particular any subspace of
a ringed space is a ringed space.
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Locally ringed spaces

Definition 2.2.7 i) A locally ringed space is a ringed space (X,OX) with the property that the stalk
of each point is a local ring. In other words for all x ∈ X, OX,x = lim−→

x∈U

OX(U) is a local ring.

ii) Given a locally ringed space (X,OX), we say that OX,x is the local ring of X at x. We denote by
mX,x or simply by mx the maximal ideal of OX,x. The residue field of X at x is OX,x/mx. We
denote it by k(x).

Example 2.2.1 Let X be a complex analytic manifold and OX the sheaf of holomorphic functions on X,
then (X,OX) is a locally ringed spaces.

Definition 2.2.8 A morphism of locally ringed spaces (X,OX) −→ (Y,OY) is a morphism of ringed
topological spaces ( f , f ♯) such that for all x ∈ X the induced map

f ♯x : OY, f (x) −→ OX,x

is a local homomorphism i.e., f ♯(m f (x)) ⊆ mx. Recall that we have OY, f (x) = ( f−1OY)x (see lemma
2.1.4).

Example 2.2.2 Let M be a manifold on which we consider the sheaf C∞(M). Then (M, C∞(M)) is a
locally ringed space. Moreover, any morphism f : M −→ N of manifolds induces a morphism of locally
ringed spaces (M, C∞(M))→ (N, C∞(N)).

Let (X,OX) be a locally ringed space and x ∈ X. We have a canonical surjection OX,x k(x),
ϕ

called evaluation at x. For h ∈ OX,x, denoting ϕ(x) by h(x), h(x) ̸= 0 if and only if h is invertible in
OX,x. Let U be an open subset of X and x ∈ U. The composition morphismOX(U) −→ OX,x −→ k(x)
will also be denoted by h 7−→ h(x). In particular, if h is an invertible element of OX(U), then h(x) it is
a nonzero element of k(x).

2.3 Affine schemes and varieties

As we have seen, one can view a differentiable manifold of dimension m as a locally ringed space.
Grothendieck* defined a scheme in roughly the same way, with the important difference that, rather
than one local model Rm in each dimension, one needs to use all the ringed spaces Spec(R) for the local
models.

2.3.1 Affine schemes

In section 2.1, we introduced the notion of sheaf on an arbitrary topological space. In this section, we are
interested in a very particular space, the spectrum of a commutative ring. We continue to assume that R
denotes a ring commutative a unit.

*Alexander Grothendieck, (French 28 March 1928-13 November 2014) was a stateless and then French mathematician
who became the leading figure in the creation of modern algebraic geometry. His research extended the scope of the field and
added elements of commutative algebra, homological algebra, sheaf theory, and category theory to its foundations, while his
so-called "relative" perspective led to revolutionary advances in many areas of pure mathematics. He is considered by many
to be the greatest mathematician of the twentieth century.
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The Structure Sheaf on Spec(R)

Definition 2.3.1 Let R be a ring, X = Spec(R). We define a sheaf of rings on Spec(R) as follows. For
any open subset U of X, let

OX(U) :=
{

s : U −→ ⨿Q∈X RQ | for all Q ∈ U, we have s(Q) ∈ RQ, there exist a, f ∈
R, and an open subset V of U such that V ⊆ D( f ) and s(L) = a

f for all L ∈ V
}

.

This formula clearly defines a sheaf of rings on X.

Remark 2.3.1 1) Note the similarity in the above definition the definition of regular functions on a
variety. The difference is that we consider functions into various local rings, instead of to a field.

2) It is clear that sums and products of such functions are again such, and that the element 1 which
gives 1 in each RP is an identity. Hence OX(U) is a commutative ring with identity.

3) If V ⊆ U are open subsets of X, then the restriction map OX(U) −→ OX(V), s 7−→ s|V is a
homomorphism of rings.

Proposition 2.3.1 Let X = Spec(R). Then :

1) For all f ∈ R, we have a canonical isomorphism OX

(
D( f )

)
≃ R f , where R f the localization of R

by S = {1, f , f 2, . . .}.

2) If g ∈ R and g ∈ ( f ), then there is commutative diagram

OX(D( f )) OX(D(g))

R f Rg

≃ ≃

where the vertical isomorphisms come from 1).

3) For any P ∈ Spec(R), there is a natural isomorphism OX,P
∼= RP which fits in a commutative

diagram

OX,P RP

OX(X) R

≃

≃

Here the vertical morphisms are the natural ones and the lower horizontal one comes from 1).

Proof. 1) Let f ∈ R, and let ψ : R f −→ OX(D( f )) be the map defined by :

ψ(
a

f n
) := the map s : D( f ) −→ ⨿

P∈X

RP which sends any P ∈ D( f ) to the image of
a

f n
in RP

One can easily see that ψ is a homomorphism of rings. We wish to show that ψ is an isomorphism.

∗ ψ is injective :
We have ker(ψ) = { a

f n ∈ R f |ψ( a
f n ) = 0} = { a

f n ∈ R f |s(P) := a
f n = 0, in RP, for all P}

Suppose that a
f n ∈ ker(ψ) and a

f n ̸= 0, and let Ann( a
f n ) := {g ∈ R f | g · a

f n = 0}. Since a
f n , since

a
f n ̸= 0, then Ann( a

f n ) ̸= R f , so there exists a maximal ideal m of R f such that Ann( a
f n ) ⊆ m. It

follows that the image of a
f n in Rm does not vanish, a contradiction.
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∗ ψ is surjective :
Let s ∈ OX(D( f )). We know that in the neighbourhood of every point of D( f ), s is represented by
a fraction. Since B := {D(g), g ∈ R} is a basis of X (see theorem 2.2.1) and D( f ) is compact (see
proposition 2.2.2), then there are f1, . . . , fr ∈ R D( f ) =

⋃r
j=1 D( f j). There are g1, . . . , gr ∈ R

such that s is represented on D( f j) by
gj

f j
. By proposition 2.2.2 we have D( fi)∩D( f j) = D( fi f j).

Using the fact that ψ is injective, we get
gi
fi
=

gj

f j
. Hence for some m

( fi f j)
m f jgi = ( fi f j)

m figj.

Using the assumption and proposition 2.2.1, there are h1, . . . , hr ∈ R and d ≥ 1 such that f d =

∑
r
j=1 hj f m+1

j . Let β := ∑
r
j=1 hj f m

j gj, it easy to check that β f m+1
i = f d f m

i gi. Then

β

f d
=

gi

fi

in R fi
. In other words,

β

f d is an element of D( f ) whose image in OX(D( f )) is s.

2) Immediate, using the fact that if D(g) ⊆ D( f ) if and only if g ∈ rad(( f )) if and only if gm = f c, for
some positive integer m. So f is invertible in Rg, and we have a homomorphism of rings

θ : R f −→ Rg
a
f n 7−→ acn

gmn

3) We have a natural isomorphism OX,P
∼= lim−→

f∈R, f /∈P

OX(D( f )). By 1) and 2), last ring is naturally

isomorphic to lim−→
f∈R, f /∈P

Rp, which can be identified with RP (∗).

Remark 2.3.2 Let R be a ring and P ∈ Spec(R). There is a natural isomorphism

lim−→
f∈R, f /∈P

RP ≃ RP

Here the arrows in the inductive system are defined as follows. If g is a multiple of f then the arrow is
the natural map. Otherwise there is no arrow. This justifying (∗)

Theorem 2.3.1 Let R and T be two rings, and let ψ : R −→ T be a homomorphism of rings. Then :

i)
(
X = Spec(R),OX

)
is a locally ringed space.

ii) ψ induces a natural morphism of locally ringed spaces

(ψ, ψ♯) :
(
Z := Spec(T),OZ) −→ (X := Spec(R),OX

)

iii) Any morphism of locally ringed spaces from Z to X is induced by a homomorphism of rings ψ :
R −→ T as in ii).

Proof. i) This follows from proposition 2.3.1.

ii) By proposition 2.2.4 ψ induces a continuous map ψ∗ : Z −→ X, we can localize ψ to obtain a local
homomorphism of local rings ψQ : Rψ−1(Q) −→ TQ. Now, for any open subset U of X, we have a

homomorphism of rings (ψ∗)♯ : OX(U) −→ OZ

(
(ψ∗)−1(U)

)
. One can see that

(
ψ∗, (ψ∗)♯

)
is

a morphism of locally ringed spaces.
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iii) Let ( f , f ♯) : (Z,OZ) −→ (X,OX) be a morphism of locally ringed spaces. By definition we have
for any open subset V of X, we have a homomorphism of rings f ♯(V) : OX(V) −→ OZ(ψ

−1(V)).
In particular, for V = X, we have OX(X) = R, and OZ

(
f−1(X)

)
= OZ(Z) = T. So we get

a homomorphism of rings ψ := f ♯(X) : R −→ T. Let Q ∈ Spec(T), we have an induced local
homomorphism on the stalks, f ♯ : OX, f (Q) −→ OZ,Q such that the following diagram

R T

R f (Q) TQ

ψ

f ♯Q

commutes. The assumption that f ♯Q is local then gives ψ−1(Q) = f (Q), which shows that f

coincides with the map Z −→ X induced by ψ. It is immediate that f ♯ also is induced by ψ. So
that ( f , f ♯) does indeed come from ψ.

Corollary 2.3.1 Let R, T be a two rings. Then the map

χ : Homrings

(
R, T

)
−→ Hom

(
(Z,OZ), (X,OX)

)

ψ 7−→
(
ψ∗, (ψ∗)♯

)

is a bijection.

Proof. This follows from theorem 2.3.1 ii) and iii).

Now, we come to the definition of a scheme.

Definition 2.3.2 Let X be a locally ringed space. We say that X is an affine scheme if there exists
a ring R such that X is isomorphic to the spectrum of R, i.e., X is an affine scheme if and only if
(X,OX) ≃ (Spec(R),OSpec(R)), where ≃ is an isomorphism of locally ringed spaces as defined in
section 2.2.2.

Examples 2.3.1 1) For a field k, Spec(k) consists of one single point, with structural sheaf k.

2) Spec(k[T1, . . . , Tn]) is the affine space An over k. More generally, an affine variety over a field k
is an affine scheme Spec(R), where the ring R is a finitely generated k-algebra.

3) Let X be an affine scheme and let f ∈ R, then
(

D( f ),OX|D( f )

)
is also an affine scheme. Indeed,

the canonical ring homomorphism
R −→ R f

induces a continuous map
h : Spec(R f ) −→ Spec(R)

which is a homeomorphism onto its, image D( f ) (see proposition 2.2.5). Moreover, h♯ is an iso-
morphism. Indeed, for any Q ∈ Spec(R f )

h♯Q : Rh(Q) −→ (R f )Q

since f /∈ Q ∩ R. Thus (
D( f ),OX|D( f )

)
≃

(
Spec(R f ),OSpec

)

4) Let (X,OX) be an affine scheme, V ⊆ X be an open subset and set OV := OX|V , then (V,OV) is
not necessarily an affine scheme (see [9, 4.1]).
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Now, we come to the general definition of a scheme :

Definition 2.3.3 A scheme is a locally ringed space (X,OX) such that every point x in X has an open
neighbourhood U, which is isomorphic to an affine scheme as a locally ringed space. For each point x of
a scheme X, one defines its residue field k(x) as the quotient of the local ring OX,x, by its maximal ideal
mx.

Remarks 2.3.1 1) Equivalently, X is a scheme if there exists an open covering {Ui}i∈I of X such
that (Ui,OX|Ui

) is isomorphic to an affine scheme (Spec(Ri),OSpeci(Ri)
) for some rings Ri.

2) We say that an open subset U of a scheme (X,OX) is affine if (U,OX|U) is an affine scheme.

Proposition 2.3.2 Any scheme has a basis of affine open subsets.

Proof. Let X be a scheme. By remarks 2.3.1, there exists an open covering {Ui}i∈I of X such that
(Ui,OX|Ui

) is an affine scheme, i.e., For any i ∈ I there is a ring Ri, a homeomorphism

ψ : Ui −→ Spec(Ri)

and a sheaf ismorphism
ψi : OSpeci(Ri)

−→ ψ∗i (OX|Ui
)

For each i, we know that {D( fi) ⊆ Spec(Ri) | fi ∈ Ri} is a basis for the topology of Spec(Ri) (see
theorem 2.2.1). Moreover, these D( fi) again define affine schemes by examples 2.3.1 3)

(
D( fi),OSpeci(Ri) |D( fi)

)
≃

(
Spec(R),OSpeci(Ri)

)
.

Let Vi := ψ−1
(

D( fi)
)
⊆ Ui, so that

(
Vi,OX|Vi

)
≃

(
D( fi),OSpeci|D( fi)

)

is an affine schemes and Bi := {Vi ⊆ Ui | fi ∈ Ri} is a basis of the topology on Ui ⊆ X. Then
B =

⋃
i∈I Bi is a basis of the topology of X consisting of affine open subsets.

We now describe the morphisms between schemes.

Morphisms of Schemes

Definition 2.3.4 A morphism of schemes is just a morphism of the underlying locally ringed spaces.

Remarks 2.3.2 1) Observe that if f : Z −→ X is a morphism of schemes, then for each z ∈ Z, with
image x = f (z), there is an induced homomorphism OX,x −→ OZ,z, hence also a homomorphism
between the residue fields k(x) −→ k(y).

2) For x ∈ X, by proposition 2.3.1 we have a natural isomorphism OX,x = RP, for some prime ideal
P of R. Moreover, we have mx = PRP, and k(x) = RP/PRP.

3) The schemes form a category (which is a full subcategory of the category of locally ringed spaces),
we shall denote it by Sch.

4) We shall denoted by ASch the category of affine schemes.

Theorem 2.3.2 There is an equivalence of categories

Spec : (Ring)op −→ ASch
R 7−→

(
Spec(R),OSpec(R)

)
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Proof. One can easily see that Spec is a morphism of categories. It suffices then to show that it is fully
faithful.
Let R, T be rings. We define the maps :

χ : Homrings

(
R, T

)
−→ Hom

(
(Z,OZ), (X,OX)

)

ψ 7−→
(
ψ∗, ψ♯

)

which is a bijection (see corollary 2.3.1). Let X = Spec(R), Z = Spec(T), we define :

Ψ : HomASch

(
Z, X

)
−→ HomRings

(
R, T

)

( f , f ♯) 7−→ f ♯(X)

where as previously seen, f ♯ : OX(X)(= R) −→ OZ(Z)(= T). It is easy to see that χ ◦ Ψ = id, and
using theorem 2.3.1 iii), we also have Ψ ◦ χ = id.

Relative schemes

Grothendieck has also introduced the relative viewpoint, whose idea is to study morphisms of schemes
and how they behave instead of studying a scheme by itself.

Definition 2.3.5 i) Let S be a (fixed) scheme. An S-scheme (or a scheme over S) is a scheme X,
equipped with a morphism f : X −→ S.

ii) A morphism from (X, f : X −→ S) to (Y, g : Y −→ S) is a morphism of schemes h : X −→ Y
such that the following diagram

X Y

S

h

f g

is commutative. We also call such a morphism h an S-morphism.

Remarks 2.3.3 1) The schemes over S form a category Sch/S, and the set of morphisms as defined
above will be denoted by HomS(X, Y).

2) We will say X is a scheme over over (a ring) R if X is a scheme over Spec(R).

Examples 2.3.2 1) Let S be a scheme that we view as an S-scheme with id : S → S, and let X with
f : X −→ S an S-scheme. The S-morphism f is called an S-section.

2) Every affine scheme is a scheme over Z. Indeed, for any ring R, we have the natural map

ϕ : Z −→ R
n 7−→ n · 1

which induces such structure.

3) An affine variety X over an algebraically closed field k comes with an inclusion k −→ k[X].
Applying Spec to this map, we see that the canonically associated scheme to X is a scheme over k.

Now, we come to special classes of morphisms.
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Open subschemes and closed subschemes

Definition 2.3.6 i) An open subscheme U of a scheme X is an open subset, equipped with the re-
striction of the sheaf OX to U.

ii) An open immersion is a morphism of schemes X −→ Y which induces an isomorphism from X to
an open subscheme of Y.

The notion of closed subscheme is more complicated, because you have to define a locally ringed space
structure on the closed subset, and there is no canonical one. First we have to define closed immersions.

Definition 2.3.7 A closed immersion is a morphism f : X −→ Y of schemes such that :

i) f induces a homeomorphism (a bicontinuous map ) from X to a closed subset of Y.

ii) The morphism of sheaves f ♯ : OY −→ f∗OX is surjective.

Example 2.3.1 Let R be a ring, J an ideal of R, X = Spec(R) and Z = Spec(R/J). By proposition
2.2.4 π∗ : Z −→ X is a homeomorphism from Z to V(J), and (π∗)♯ : OX −→ π∗∗OZ is surjective
because it is surjective on the stalks.

Definition 2.3.8 (closed subscheme) Let X be a scheme. A closed subscheme of X is an equivalence class
of closed immersions into X.

Remark 2.3.3 More precisely, A closed subscheme of a scheme X is a scheme Z, equipped with a closed

immersion ı : Z −→ X, where one identifies the pairs (Z, ı) and (Z
′
, ı
′
) if there exists an isomorphism

of schemes h : Z −→ Z
′

such that the following diagram

X Z
′

Z

h

ı

ı
′

is commutative.

Example 2.3.2 Spec(R/J) is a closed subscheme of Spec(R) with underlying topological space V(J).

Gluing schemes

Given a family
{

Xi

}
i∈I

of schemes indexed by a set I. Assume that in each of the schemes Xi we are
given a collection of open subschemes Xij, where the indices i and j run through I.

Notation. Let Xij ⊆ Xi be open subschemes, and δij : Xij −→ Xji be isomorphisms of schemes for all
i, j ∈ I. We require also that

i) δii = id.

ii) δij(Xij ∩ Xik) = Xji ∩ Xjk.

iii) δik = δik ◦ δij on Xij ∩ Xik.
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Proposition 2.3.3 Given gluing data Xi, δij as above, there exists a scheme X with open immersions
δi : Xi −→ X such that

Xij Xi

Xji Xj X

δij

δj

δi (2.2)

The scheme X has the universal property : For every scheme Z and any family of morphisms of schemes
ηi : Xi −→ Z satisfying

Xij Xi

Xji Xj Z

δij

ηj

ηi (2.3)

there exists a unique morphism η : X −→ Z such that

Xi X

Z

δi

η
ηi

is commutative.

Remarks 2.3.4 1) In (2.2), we have δ|Xij
= δ|Xji

◦ δij.

2) In (2.3), we have η|Xij
= ηj|Xij

◦ δij.

Proof. Let X := ⨿i Xi/ ∼, where x ∈ Xi ∼ y ∈ Xj if and only if y = δij(x). This makes a topological
space X with open subsets Xi ⊆ X. We have a sheaf OXi

on each Xi, and we glue them to get OX (see
theorem 2.1.4). For more details for the proof we refer to [9, Section 4.3, p.91].

Example 2.3.3 Let X1 = X2 = A1
k, X12 = X21 = A1

k \ {0}. Write X12 = Spec(k[X, X−1]),

X21 = Spec(k[Y, Y−1]). Gluing them by X 7−→ Y−1, we get the projective line P1.

2.3.2 Varieties

The goal of this section is to

∗ describe how schemes are a generalization of varieties

∗ or more precisely that how there is a fully faithful functor.

τ : Var(k) −→ Schk

from the category of varieties over an algebraically closed field k to the category of schemes over
Spec(k).
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If you feel like a physicist, you might want to regard this as a way of understanding observables like
positions in terms of spectra of certain operators. The starting point is the basic observation that the
information contained in ordinary spaces may be encoded in the (rings and / or algebras of) functions on
these spaces.

Notation. Let X be a topological space and denote by t(X) the set of nonempty irreducible closed subsets
of X. Hence if Z ⊆ X is closed, then t(Z) ⊆ t(X). Moreover t has the following properties :

i) t(Z1 ∪ Z2) = t(Z1) ∪ t(Z2) if Z1, Z2 ⊆ X are closed

ii) For a family of closed subsets {Zi}i, we have t(
⋂

i Zi) =
⋂

i t(Zi).

i) and ii) define a topology on the set t(X) by saying that Y ⊆ X is closed if and only if Y = t(Z) for
some closed subset Z ⊆ X.
In addition, a continuous map f : X1 −→ X2 induces a continuous map t( f ) : t(X1) −→ t(X2) given
by

t( f ) : Z −→ f (Z).

t( f ) is well-defined since for an irreducible closed subset Z of X, f (Z) is irreducible, so its closure f (Z)
is also irreducible.
Thus t defines a functor T op −→ T op. Furthermore we have a continuous map

γ : X −→ t(X)

x 7−→ {x}

This map γ is the tool we have to use to add generic points in order to construct a scheme from a variety.
We will only sketch the proof of the following theorem. A more detailed proof can e.g. be found in [12].

Theorem 2.3.3 Let k be an algebraically closed field. Then there exists a fully faithful functor τ :
Var(k) −→ Schk from the category of varieties over k to the category of schemes over Spec(k).

The idea of the proof : Let X be a variety over k and denote by OX its sheaf of regular functions. We
set

τ(X) := (t(X), γ∗OX).

One has to show that this is indeed a scheme over Spec(k). One first proves that (t(X), β∗OX) is a
scheme if X is an affine variety. Then, by examples 2.3.2, we know that giving a morphism of schemes
t(X) −→ Spec(k) is equivalent to endowing the sheaf γ∗OX with the structure of a vector space over k.
This is done by using theorem 2.3.2 : Since γ−1(t(X)) = X, we have

HomSh

(
(t(X), γ∗OX), (Spec(k),Ok)

)
≃ Homrings

(
k, γ∗(t(X))

)
= Homrings

(
k,OX(X)

)
.

We define this ring homomorphism k −→ OX(X) by mapping a ∈ k to the constant function λa on X.
It follows that τ(X) is a scheme over Spec(k). Now if X and Y are two varieties, one also checks that the
natural map induced by τ

Homvar(k)(X, Y) −→ HomShk

(
τ(Y), τ(X)

)
.

is a bijection.
The functor τ being fully faithful, it follows again that we may identify the category of varieties over
k with a full subcategory of the category of schemes over Spec(k) in the case of an algebraically closed
field. Thus we may see varieties as being "embedded" into the category of schemes. In particular, that
τ(X) ≃ τ(Y) as schemes if and only if X ≃ Y as varieties.
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New definition of a variety

Definition 2.3.9 Let k be an algebraically closed field. We say that a scheme X over Spec(k) is an affine
variety over k if it is isomorphic to the spectrum of the coordinate ring of an affine variety. In other
words, X = Spec(R), where R is a finitely generated k-algebra with no zero divisors.

Examples 2.3.3 The schemes

1) A1
C
= Spec(C[t]) and Spec

(
C[X, Y]/(X2 −Y3)

)
are affine varieties.

2) Spec
(
C[X, Y]/(XY)

)
is not affine variety.

2.4 Fiber products and dimension of schemes

2.4.1 Fiber products

In classical geometry (The theory of algebraic varieties). We know that we can construct the Cartesian
product X × Y of two varieties X and Y. The identification An

k ×Am
k = An+m

k shows that this is a
reasonable thing to do. Indeed, If X = Z( f1, . . . , fr) ⊆ An

k and Y = Z(g1, . . . , gs) ⊆ Am
k are two

affine varieties, then their product X × Y is the affine variety Z( f1, . . . , fr, g1, . . . , gs) ⊆ Am+n
k , and

departing from this, the general case is handled by a gluing process. However, with schemes we redefine

An
k = Spec(k[T1, . . . , Tn])

and the cartesian product no longer works even as sets!
We have to understand what the product really means in the categorical language. Let us start with sets
X, Y, the product is a new set X×Y with projections π1 : X −→ X×Y and π2 : X −→ X×Y which
is universal in the sense that given any other set Z with projections f1 : Z −→ X, f2 : Z −→ Y , we
have a unique map ϕ : Z −→ X×Y , namely ϕ(z) = ( f1(z), f2(z)), such that

Z Y

X X×Y

f2

π1

π2f1
ϕ

commutes. This can be used to define the product in any category. Note that there is no guarantee that
the product exists in an arbitrary category, but it will be unique up to isomorphism if it does.
In this subsection, for any scheme S and any two S-schemes X −→ S and Y −→ S we will con-
struct a new scheme, denoted X ×S Y, equipped with projection morphisms πX : X ×S Y −→ X and
πY : X×S Y −→ Y satisfying a certain universal property.

Let C be category and S be a fixed object in C.

Definition 2.4.1 (Fiber product) The fiber product of f : X −→ S, g : Y −→ S (if it exists) is
an object X ×S Y ∈ C with morphism πX, πY to X, Y. For any Z ∈ C with morphisms ψ1, ψ2 to X, Y
respectively (commuting with f and g as indicated in the diagram below), there exists a unique morphism
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Z → X×Y such that the whole diagram is commutative.

Z

X×S Y Y

X S

∃ unique

πY

πXψ1

ψ2

g

f

Notation and convention 1) We note the unique morphism Z −→ X×S Y by (ψ1, ψ2)S.

2) We call πX : X×S Y −→ X the first projection, and πY : X×S Y −→ Y the second projection.

Example 2.4.1 For sets or topological spaces X×S Y = {(x, y) ∈ X×Y | f (x) = g(y)}.

Theorem 2.4.1 The fiber product X×S Y is unique if it exists. In other words, if Z and T are two fiber
products satisfying the above characteristic property, then Z and T are canonically isomorphic.

Proof. Let Z and T be two fiber products satisfying the above characteristic property. In particular T
comes together with morphisms to X and Y. As Z is a fiber product, we get a morphism φ : T −→ Z

T

Z Y

X S

φ

g

f

So that this diagram commutes. By symmetry we get a morphism ϕ : Z −→ T as well. The diagram

Z

T Y

X S

ϕ

g

f

is then commutative by construction. But the same diagram is commutative too if we replace φ ◦ ϕ by
idZ. The universal property when considering Z as a fiber product, we have φ ◦ ϕ = idZ. Moreover, by
symmetry ϕ ◦ φ = idT. So Z and T are canonical isomorphic.

In particular, the fiber product is defined in the category of schemes, i.e., by taking C = Sh, is defined in
the following way :
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Definition 2.4.2 Let X, Y, S be schemes with morphisms f : X −→ S, and g : Y −→ S. The fiber
product of X and Y over S is a scheme X×S Y with morphisms πX, πY

X×S Y

X Y

S

πX πY

f g

making the diagram commutative, along with the universal property that for any scheme Z with mor-
phisms ψ1, ψ2 to X and Y, respectively, such that f ◦ ψ1 = g ◦ ψ2, there exists a unique morphism
ϕ : Z −→ X×S Y such that ψ1 = πX ◦ ϕ and ψ2 = πY ◦ ϕ

Z

X×S Y

X Y

S

πYπX

gf

ψ1 ψ2
ϕ

Proposition 2.4.1 Fibre products exist in the category of schemes.

Proof. See [12, Theorem 3.3, p.87].

Consequence. 2.4.1 If X = Spec(A), Y = Spec(T) and S = Spec(R), where A, T and R are
commutative rings, f , g make A and T into R-algebras, and we have X×S Y = Spec

(
A⊗R T

)

Remark 2.4.1 Observe that if S ⊆ T is an open subscheme, then X ×T Y = X ×S Y as if j : S −→ T
is the natural inclusion morphism, then f ◦ ψ1 = g ◦ ψ2 if and only if j ◦ f ◦ ψ1 = j ◦ g ◦ ψ2. Also

observe that if V is an open subset of X, then U×S Y = π−1
X (V) ⊆ X×S Y. Indeed, U×S Y is an open

subscheme of X×S Y.

Proposition 2.4.2 Let f : X −→ S and g : Y −→ S be morphisms of schemes. Suppose that U ⊆ S,
V ⊆ X, W ⊆ Y are opens subschemes such that f (V) ⊆ U and g(W) ⊆ U. Then the canonical

morphism V ×U W −→ X ×S Y is an open immersion which identifies V ×U W with π−1
X (V) ∩

π−1
Y (W).

Proof. Let Z be a scheme. Suppose that φ1 : Z −→ V and φ2 : Z −→ W are morphisms such that
f ◦ φ1 = g ◦ φ2 as morphisms into U. Then they agree as morphisms into S. By the universal property
of fibre product we get a unique morphism ϕ : Z −→ X ×S Y. Moreover, ϕ has image contained in the

open π−1
X (V) ∩ π−1

Y (W). Thus π−1
X (V) ∩ π−1

Y (W) is a fibre product of V and W over U. The result
follows from the uniqueness of the fibre product.
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Basic properties of the fibre product

Proposition 2.4.3 Let X, Y and Z be schemes over S. Then :

i) (Reflectivity) X×S S ≃ X.

ii) (Symmetry) X×S Y ≃ Y×S X.

iii) (Associativity) (X×S Y)×S Z ≃ X×S (Y×S Z).

If S
′

is a scheme over S and we assume that Y is as well a scheme over S
′
, then

iv) (Transitivity) X×S S
′ ×S

′ Y ≃ X×S Y, where X×S S
′
is a scheme over S

′
via the projection onto

S
′

and Y is a scheme over S via the map S
′ −→ S.

v) Let f1 : X1 −→ X and g1 : Y1 −→ Y two S-morphisms. There is a unique morphism f1 × g1 :
X1 ×S Y1 −→ X×S Y such that the two squares in the diagram commute

X1 X1 ×S Y1 Y1

X X×S Y Y

πX1
πY1

πYπX

f1 f1×g1 g1

Proof. All there properties follow from the universal property of the fiber product.

Fibres

Definition 2.4.3 Let f : X −→ S be a morphism of scheme and s ∈ S be a point. The scheme theoretic
fibre Xs of f over s, or simply the fibre of f over s, is the scheme fitting in the following fibre product
diagram

Xs = Spec(k(s))×S X X

Spec(k(s)) S

In particular, the fibre Xs is a scheme over k(s).

Proposition 2.4.4 The map πX : Xs −→ X is a homeomorphism between Xs and f−1(s).

Proof. Without loss of generality, we may assume S = Spec(R), X = Spec(T), and f is induced
by ψ : R −→ T. Let s ∈ S be defined by the prime ideal q. We have k(s) = k(q) = Rq/qRq.
So Xs = Spec(k(s)) ×S X = Spec

(
Rq/qRq ⊗R T

)
= Spec

(
Tq/qTq

)
. Elements of Spec(Tq/qTq)

correspond bijectively to primes p of T such that ψ(q) ⊆ p, and p does not intersect ψ(R \ q). This is
equivalent to ψ−1(p) = q. So the map πX : Xs −→ f−1(s) is a bijection. Since Spec(Tq/qTq) −→
Spec(Tq) −→ Spec(T) are successive embeddings, and f−1(s) is endowed with the subspace topology,
πX is a homeomorphism.

Remark 2.4.2 We may view a morphism f : X −→ S as family of fibers Xs parameterized by s ∈ S.

Example 2.4.2 Let X := Spec
( k[X,Y,Z]
(ZY−X2)

)
and S := Spec(k[Z]). We have the inclusion k[Z] k[X,Y,Z]

(ZY−X2)

so we get a continuous map g : X −→ S. By identifying the closed point of S with elements of k, for
b ∈ k, b ̸= 0, Xb= is the plane curve defined by bY = X2.
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Base change

Definition 2.4.4 Let X, S, and S
′

be schemes. We define XS := X×S
′ S, the following diagram

XS X

S S
′

πX

πS
g

f

is called the base change of g to S via f .

Remarks 2.4.1 1) The above definition generalises the idea of changing the ”base coefficients”.

2) Let h : Y −→ S, and let ψ : X −→ Y be a S-morphism, then there is an induced morphism

ψS
′ = ψ× idS

′ from XS
′ to YS

′ over S
′
, making the following diagram

XS
′ YS

′ S
′

X Y S

ψ
S
′

πX

π
S
′

πY
g

ψ h

commutative.

Example 2.4.3 Let S = Spec(R), then Am
S := Am

Z×Spec(Z) S is a base change of Am
Z(:= Spec(Z[T1, . . . , Tm]) −→

Spec(Z) to X via S −→ Spec(Z).

Definition 2.4.5 We say that a property P of morphism of schemes is stable under base change if for

any morphism X −→ S verifying P , X×S S
′

also verifies P for every S-scheme S
′
.

2.4.2 Dimensions of schemes

Recall that the Krull dimension of a ring R is defined as the supernum of length of all strictly ascending
chains of prime ideals in R.
Recall also that the dimension of a topological space X is the supernum of all integers d such that there
exists a chain

Z0 ⊊ . . . ⊊ Zn

of distinct irreducible closed subsets of X.

Definition 2.4.6 Let X be a scheme. We define the dimension of X to be the dimension of its underlying
topological space.

Proposition 2.4.5 Let X = Spec(R) be an affine scheme. The dimension of X equals the Krull dimen-
sion of R.

Proof. Let Z0 ⊊ · · · ⊊ Zr be a chain of distinct irreducible closed subsets of X. By proposition 2.2.8,
the Zi are the form V(Pi), for some Pi ∈ Spec(R). Moreover, by theorem 2.2.2 i), we have j

(
V(Pi)

)
=

rad(Pi) = Pi for all i. Also, for all i, the fact that Zi ⊊ Zi+1 implies j(Zi+1) = Pi+1 ⊊ j(Zi) = Pi.
Hence, we get a chain of strictly ascending prime ideals of R

Pr ⊊ · · · ⊊ P0.
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Let Qi = Pr−i, then we have
Q0 ⊊ · · · ⊊ Qr.

Hence dim(X) ≤ dim(R). Conversely, let P0 ⊊ · · · ⊊ Pn be a strictly ascending chain of prime ideals
of R. Applying V(.), we get a chain of irreducible closed subsets of X

V(Pn) ⊊ · · · ⊊ V(P0).

Set Zi = V(Pn−i), we get a strictly ascending chain

Z0 ⊊ · · · ⊊ Zn

of irreducible closed subsets of X. Hence dim(R) ≤ dim(X).

Remark 2.4.3 Recall that, if R is a Noetherian ring, then dim(R[T]) = dim(R) + 1.

Examples 2.4.1 1) If R is a Noetherian ring, then the dimension of Am
R = Spec

(
R[T1, . . . , Tn]

)

equals m + dim(R).

2) dim(Spec(Z)) = 1. all maximal chain have the form V(P) ⊊ V(0) = Spec(Z).

3) If k is a field, then we dim(k) = 0. So dim(Spec(k)) = 0.

Remark 2.4.4 Let X be a scheme.

i) If Y ⊆ X is an open or a closed subscheme, then dim(Y) ≤ dim(X).

ii) Let X =
⋃

i∈I Spec(Ri) be a scheme dim(X) = Supi

(
dim(Spec(Ri)) (see proposition 1.2.1 1)).

Codimension

Let X be a topological space, and let Z ⊆ X be an irreducible closed subset of X.

∗ The codimension codim(Z, X) of Z is defined to be

Sup{m | there exists a strictly ascending chain Z = Z0 ⊊ · · · ⊊ Zm, of irreducible closed subsets of X}.

∗ If Z is an arbitrary closed subset, we define its codimension as

in f {codim(Z
′
, X) | Z′ is an irreducible and closed subset of X}.

By the correspondence between closed subsets and prime ideals (see theorem 2.2.2), the codimension of
V(P) in Spec(R) is the height of the prime ideal P of R.

Proposition 2.4.6 Let X be scheme, x ∈ X be a point and set Z = {x}. Then dim
(
OX,x

)
=

codim(Z, X)

Proof. Let Z ⊊ Z1 ⊊ · · · ⊊ Zr be a chain of distincts irreducible closed subsets of X, then for any open

neighborhood V of x the generic points y1, . . . , yr of Z
′
i are contained in V. We can assume that V =

Spec(R) is an affine open of x, then the generic points correspond to prime ideals (of R) Pr ⊊ · · · ⊊ P0 =
P, where P is the prime ideal corresponding to x(∈ V). in R. Therefore, dim(OX,x) = codim(Z, X).

2.5 Local and global properties of schemes

In this section, we survey some of the main geometric properties of schemes.
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2.5.1 Noetherian schemes

Definition 2.5.1 i) A scheme X is called locally Noetherian if X admits an affine open covering
X =

⋃
i∈I Xi such that OX(Xi) is a Noetherian ring for all i.

ii) A scheme X is called Noetherian if it is compact and locally Noetherian, where X is compact means
that every open covering of X has a finite subcovering.

Remarks 2.5.1 1) Recall from lemma 2.2.6, that for any commutative ring R, Spec(R) is compact.
So an affine scheme is compact.

2) In general a scheme is Noetherian if and only it can be covered by finitely many open affine schemes
Spec(Ri), where each Ri is Noetherian.

Lemma 2.5.1 Let R be a Noetherian ring and S be a multiplicatively closed subset of R. Then S−1R is
a Noetherian ring.

Proof. See [3, Proposition 7.3, p.80 ].

Theorem 2.5.1 Let X be a scheme. Then X is locally Noetherian if and only if for any open subset U
of X, which is isomorphic to an affine scheme

(
Spec(R),OSpec(R)

)
as locally ringed space, the ring R is

Noetherian.

Proof. By simple logical reductions using lemma 2.5.1 and proposition 2.2.2, the statement of the theo-
rem can be shown to be equivalent to the following statement in commutative algebra. Let R be a ring,
let g1, . . . , gr ∈ R be such that 1 ∈ (g1, . . . , gr) i.e R = (g1, . . . , gr). If Rgi

is Noetherian for all i, then
R is Noetherian. This is what we shall prove.
Let ψi : R −→ Rgi

be the natural homomorphism and J be an ideal of R. Then we have

J =
⋂

i∈{1,...,r} ψ−1
(
ψi(J)Rgi

)
(2.4)

where ψi(J)Rgi
is the ideal in Rgi

generated by ψi(J). Now, from the assumption that (g1, . . . , gr) = R,
and by proposition 2.2.1 5) we seen that there are element bi ∈ R such that

∑
i

big
m+n
i = 1

Thus c ∈ J. Now consider an ascending chain of ideals of R

J1 ⊆ J2 ⊆ · · ·

For all i ∈ {1, . . . , r}
ψi(J1)Rgi

⊆ ψi(J2)Rgi
⊆ · · · (2.5)

is an ascending chain of ideals of Rgi
, which must become stationary because Rgi

is Noetherian, since
there are only finite many Rgi

, we conclude from the above that J1 ⊆ J2 ⊆ · · · is stationary. Hence R is
Noetherian.

Proposition 2.5.1 Let R be a commutative ring. Then Spec(R) is Noetherian if and only if R is Noethe-
rian.

Proof. ⇒) You should think of this as a purely algebraic fact : Refining the cover, we can assume that
for each i, we have Xi = R fi

. As in the proof of theorem 2.5.1 R is Noetherian provided that each
localization R fi

is Noetherian, and 1 ∈ ( f1, . . . , fr).

⇐) This follows from theorem 2.2.2.
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Proposition 2.5.2 Let X be a Noetherian scheme, then its underlining topological space is Noetherian.

Proof. Since X is compact, then we can write X =
⋃r

i=1 Xi, where (Xi,OXi
) ≃ (Spec(Ri),OSpeci(Ri)

).
A descending chain

Z1 ⊇ Z2 ⊇ · · · (2.6)

gives rise to a chain for all i ∈ {1, . . . , r}

Z1 ∩ Xi ⊇ Z2 ∩ Xi ⊇ · · · (2.7)

of closed subsets in Xi. Since Xi are Noetherian, this last chain is stationary. Since we have only a finite
number of indices i, this implies that X is Noetherian.

Proposition 2.5.3 Let X be a locally Noetherian scheme. Then any closed or open subscheme of X is
also locally Noetherian.

Proof. Without loss of generality, we may assume that X is Noetherian. We can consider an open cov-
ering (Xi)i∈I of X such that ∀i, Xi = Spec(Ri), where each Ri is Noetherian.
Let Z ⊆ X be an open or closed subset, we will show that Z ∩ Xi is Noetherian. Since Z ∩ Xi is
an open or a closed subset of an affine scheme, we reduce our statement to considering the case where
X = Spec(R).
If Z is open, by theorem 2.2.1, there are elements f1, . . . , fr ∈ R such that Z =

⋃r
i=1 D( fi) =⋃r

i=1 Spec(R fi
). Since R is Noetherian, then by lemma 2.5.1, for all i, R fi

are Noetherian, and so by
proposition 2.5.1, Spec(R fi

) is Noetherian. It follows that Z is also Noetherian.
If Z is closed, we have Z = V(J) for some ideal J ⊆ R. We know that if R is Noetherian then R/J is
also Noetherian. So Spec(R/J) is Noetherian, and by proposition 2.2.4, Spec(R/J) is homeomorphic to
V(J). Hence Z is Noetherian.

Definition 2.5.2 Let f : X −→ Y be a morphism of schemes.

i) f is called locally of finite type if for every affine open U = Spec(R) ⊆ Y, f−1(U) =
⋃

j Vj with

each Vj = Spec(Aj) affine open subset of X, with Aj a finitely generated R-algebra.

ii) f is called compact if Y =
⋃

i Yi with Yi open affine subschemes of Y that f−1(Yi) is compact for
all i.

iii) f is called of finite type if f is locally of finite type and compact.

iv) f is called finite if Y =
⋃

i Yi with each Yi = Spec(Ri) affine open subschemes of Y where Ai is a
finite Ri-algebra.

v) f is called affine if Y =
⋃

i Ui with Ui = Spec(Ri), an affine open subscheme of Y such that
f−1(Ui) is also affine.

Remarks 2.5.2 1) Recall that an R-algebra A is finite if A is finitely generated as an R-module.

2) Finiteness is transitive : The composition of finite morphisms is finite. This follows from the fact
that finite generation of modules is transitive.

3) The base change of a morphism which is locally of finite type is locally of finite type. The same is
true for morphisms of finite type (see [30]).
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4) We have the following implications :

affine

f inite compact

of finite type

locally of finite type

Examples 2.5.1 1) Spec(Q) −→ Spec(Z) is not locally of finite type.

2) Let R be a ring. Then An −→ Spec(R), and Pn −→ Spec(R) are both of finite type.

2.5.2 Irreducible schemes

Definition 2.5.3 A nonempty scheme is connected if its underlying topological space is connected, i.e
cannot be written as a disjoint union of two nonempty open sets.

Proposition 2.5.4 Let X = Spec(R) be an affine scheme. The following assertions are equivalent :

1) X is connected.

2) The only idempotents of R are 0 and 1.

Proof. 1)⇒ 2) Assume that X is connected. If R contains an idempotent element r such that r ̸= 1, 0,
then we have R = r · R× (1− r) · R and both rR and (1− r) · R are non trivial subrings of R. Hence
Spec(R) = Spec(rR)× Spec

(
(1− r) · R

)
≃ Spec(rR)⨿ Spec

(
(1− r) · R

)
. So X is not connected.

2)⇒ 1) Assume that 0, 1 are the only idempotent of R. If X is not connected, then X = X1 ⨿ X2 with
Xi ⊊ X nonempty opens. We then have OX(X) = OX(X1) × OX(X2). As Xi are nonempty, then
OX(Xi) are non trivial rings. In particular, (1, 0) is a non trivial idempotent of R. A contradiction.

Definition 2.5.4 Let X be a scheme, we say that X is irreducible if its underlying topological space is
irreducible.

Remark 2.5.1 Plainly, irreducible topological spaces are connected.

Examples 2.5.2 1) Let k be an algebraically closed field. Am
k = Spec(k[T1, . . . , Tn]) is irreducible.

2) X = k[X, Y], Z = V(XY) = V(X) ∪V(Y). Then Z is not irreducible.

Proposition 2.5.5 Let X = Spec(R) be an affine scheme. Then X is irreducible if and only if N(R) is
a prime ideal.

Proof. See proof of theorem 2.2.4.

Recall again the following terminology : Let X be a topological space and let x, y ∈ X, we say that x is

a generic point if {x} = X (see definition 2.2.3). An irreducible component of X is maximal irreducible

closed subset of X. y is a specialization of x (x specializes to y) if y ∈ {x}.
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Examples 2.5.3 1) Let X be an affine scheme, and let P ∈ X, then P = V(P). Moreover, P is the
only generic point of V(P).

2) Let R be a domain, then (0) is only generic point of Spec(R).

Proposition 2.5.6 Let X be a scheme. Then :

1) Every irreducible closed subset of X has a unique generic point.

2) For any generic point x ∈ X, {x} is an irreducible component of X. Moreover, there exists a
bijection between the set of irreducible components of X and the set of generic points of X.

3) For any x ∈ X, there exists a bijection between the set of irreducible component of Spec(OX,x)
and the set of irreducible components of X containing x.

Proof. 1) Let Z be an irreducible closed of X. Assume that X is affine scheme i.e X = Spec(R) for
some ring R. By proposition 2.2.8 Z is irreducible if and only if Z is of the form Z = V(P), for
some prime ideal P of R. By example 2.5.3, P is the only generic point of Z.
Now, for X an arbitrary scheme, let the only x ∈ Z, then x has an affine neighborhood V in X.
Since Z is irreducible then Z ∩ V ⊆ Z is irreducible and dense i.e Z ∩V = Z. By the above,

Z ∩ V contains a generic point xo, which is also a generic point of Z. If y0 ∈ Z with {y0} = Z,
then y0 ∈ Z ∩V and it follows immediately (from the affine case above) that x0 = y0.

2) Let Z be an irreducible component of X, and x0 ∈ Z be its generic point. We claim that x0 is a
generic point of X, that is no point other then x0 can specialize to x0 : if y0 specialize to x0 then

x0 ∈ {y0}, hence Z = {x0} ⊆ {y0}. Since Z is a maximal irreducible closed subset of X, then

{x0} = {y0}, hence x0 = y0. This shows that x0 is a generic point of X. It is easy to check that

x 7−→ {x} is a bijection from X onto the set of irreducible components of X.

3) We may assume that X = Spec(R), with x ∈ X corresponding to a prime ideal Px of R. By
the correspondence between irreducible closed subsets and the prime ideals of R (see lemma 2.2.2
and proposition 2.2.8), an irreducible component of X corresponds to a minimal prime ideal of
R. Hence the irreducible components of X containing x are in one-to-one correspondence with
minimal prime ideals of R which are contained in Px, or still with the minimal prime ideals of
RPx = OX,x, that is the irreducible component of Spec(OX,x).

2.5.3 Regular schemes

Recall that, a local Noetherian ring (R,m) is said to be regular if dim(R) = dimk

(
m/m2

)
, where

k := R/m. Recall also that R is regular if and only if every local ring RP of R is regular. For more
details we refer to [3, Theorem 11.22].

Definition 2.5.5 Let X be a locally Noetherian scheme, and let x ∈ X be a point.

i) We say that X is regular at x, or x is a regular point of X if OX,x is regular.

ii) We say that X is regular if X is regular at all points.

iii) A point x ∈ X which is not regular is called a singular point of X.

iv) A scheme that is not regular is said to be singular.

Remark 2.5.2 For i) equivalently, X is regular at x if there exists an affine open neighbourhood U ⊆ X
of x such that the rings OX(U) is Noetherian and regular.
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Proposition 2.5.7 Let X be a scheme. The following are equivalent :

1) X is regular.

2) For every open U ⊆ X, the ring OX(U) is Noetherian and regular.

3) There exists an affine open covering X =
⋃

i∈I Ui such that each OX(Ui) is Noetherian and
regular.

4) There exists an affine open covering X =
⋃

i Xi such that each open subscheme Xi is regular.

Proof. 1) ⇒ 2) Let U be an open subset of X. By theorem 2.5.1 OX(U) ≃
(
Spec(R),OSpec(R)

)
as

locally ringed space for some Noetherian ring. By theorem 2.2.3 Spec(R) is Noetherian. So OX(U) is
Noetherian. Since X is regular, then in particular it is regular at all point of U , so necessarily for any
prime ideal Q of R, RQ is regular, so R is regular.
2)⇒ 3) Clear.
3)⇒ 4) Immediate.
4)⇒ 1) Assume that X =

⋃
j Xj with Xj regular for all j. Let j0 such that x ∈ Xj0 . Since Xj0 is regular

at x, then x is a regular point of X.

Corollary 2.5.1 If X is a regular scheme, then every open subscheme is regular.

Corollary 2.5.2 Let X be a Noetherian scheme, then X is regular if and only if X is regular at all its
closed points.

Proof. If X is regular, then X is regular at all points of X. In particular, X is regular at all closed points.
Conversely, note that, as X is Noetherian any closed subset of X admits a closed point. One can deduce
that X is regular.

Definition 2.5.6 Let X be a locally Noetherian scheme. We denote the set of regular points of X by
Reg(X), and we denote the set of singular points by Sing(X).

Remark 2.5.3 Let X = Spec(R) be a Noetherian affine scheme. Then Spec(R) is regular if and only if
for all P ∈ Spec(R), OX,P ≃ RP is regular if and only if R is regular.

2.5.4 Reduced and integral schemes

Reduced schemes

Recall that a commutative ring R is said to be reduced if it has no nilpotent elements, i.e the only nilpotent
element of R is 0. Recall also that R is called integral if for any a, b ∈ R such that ab = 0, we have a = 0
or b = 0.

Definition 2.5.7 Let X be a scheme.

i) X is called reduced at point x, if the local ring OX,x is reduced.

ii) X is called reduced, if it is reduced at all points.

Proposition 2.5.8 Let X be a scheme. Then X is reduced if and only if for each nonempty open U ⊆ X,
the ring OX(U) is reduced.

Proof. Assume that X is reduced and let U be an open subset of X. We want to show that OX(U) is a
reduced ring. Let f ∈ OX(U) be a section of U and suppose that f m = 0, for some positive integer m.
Plainly, the canonical image fx of f in OX,x is also nilpotent, so fx = 0. Since OX is a sheaf, then by
definition 2.1.6 i) f = 0. The converse is clear.
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Recall a direct limit of reduced rings is also reduced.

Proposition 2.5.9 Let X = Spec(R) be an affine scheme, then X is reduced if and only if R is reduced.

Proof. If X is reduced by proposition 2.5.8 OX(X) is reduced and by proposition 2.3.1 3) OX(X) ≃ R.
So R is reduced. Conversely, suppose that R is reduced and let P ∈ Spec(R). By proposition 2.3.1 3)
we have OX,P ≃ RP. Moreover, we know that any localisation of a reduced ring is reduced. So, OX,P is
reduced.

Remark 2.5.4 Let X be an affine scheme i.e., X = Spec(R) for some ring R, then Xred := Spec
(

R/N(R)
)

is a reduced scheme.

Integral schemes

Definition 2.5.8 Let X be a scheme.

i) We say that X is an integral at x ∈ X if OX,x is integral domain.

ii) If X is integral at all points of X, and X is irreducible, then we say X is integral.

Proposition 2.5.10 Let X be a scheme. Then X is an integral if and only if OX(U) is an integral
domain for every open subset U of X.

Proof. Assume that X is integral, U be an open subset of X, and let f , g ∈ OX(U) such that f g = 0.
For x ∈ X, let f (x) be the image of f in k(x). X f := {x ∈ U | f (x) = 0}, and Xg = {x ∈ U | g(x) =
0}. X f and Xg are two closed subsets of X. Indeed, it suffices to see that X f is closed in any affine open
subset W = Spec(R) of U. We have X f ∩W = V( f ), and Xg ∩W = V(g). So X f and Xg are closed
in W. By lemma 1.3.1 X f and Xg are closed in X. Moreover, we have X f ∪ Xg = U, since f g = 0.
Because U is irreducible, then X f = U or Xg = U. We can assume X f = U. We claim that f = 0.
Indeed, we only need to show that f|V = 0 for any affine open V ⊆ U. But f|V ∈ N(OX(V)) which is

reduced. So f|V = 0. Hence f = 0. Conversely, assume that OX(U) is integral for any nonempty open
U of X. In particular, all local rings OX,x are integral. It remains to check that X is irreducible. Write
X = X1 ∪ X2 with Xi two closed subsets of X such that Xi ⊊ X. Let Vi = X \ Xi, i = 1, 2 which is
open in X. Moreover, we have V1 ∩V2 = ∅. Hence OX(V1 ∪V2) = OX(V1)×OX(V2). In particular
OX(U), where U = V1 ∪V2, is not integral. A contradiction.

Proposition 2.5.11 Let X = Spec(R) be an affine scheme, then X is integral if and only if R is integral
domain.

Proof. If X is integral, then by proposition 2.5.10 we have for any open subset U of X, OX(U) is an
integral domain. In particular, for U = X we get R(= OX(X)) is integral domain. Conversely, Assume
that R is integral domain, then N(R) is a prime ideal, so by theorem 2.2.4, Spec(R) is irreducible. Now
let P ∈ Spec(R), then OX,P being the localization of integral domain is also integral domain.

Example 2.5.1 Let Z = Spec(k[T1, . . . , Tn]) be an affine scheme, then X is integral.

Proposition 2.5.12 Let X be a scheme. Then X is integral if and only if it’s reduced, and irreducible.

Proof. Assume X is integral. Clearly it is reduced. If X is reducible then there exist closed subsets
X1, X2 of X such that X = X1 ∪ X2, take Ui = X \ Xi for i = 1, 2, which are disjoint open subsets of X.
Then OX(U1 ∪U2) = OX(U1)×OX(U2), which is not an integral domain. A contradiction. Now,
assume X is reduced and irreducible. Let U ⊆ X be open and assume that f , g ∈ OX(U) with f g = 0.
Let
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X f = {x ∈ U | fx ∈ mx}, and Xg = {x ∈ U | gx ∈ mx}

For any affine open W = Spec(R) ⊆ U, we have

( f|W)x ∈ mx if and only if x ∈ V( f |W).

Thus, X f ∩W = V( f ) and Xg ∩W = V(g). So X f and Xg are closed. Moreover, we X f ∪ Xg = U.
But X is irreducible, so U is irreducible as well (see proposition 1.1.3). We can then assume that X f = U.
But then in R, f is in every prime ideal, so f is nilpotent. So f = 0. Hence X is integral.

Lemma 2.5.2 Let X be an integral scheme with a generic point ϵ. Then :

i) k(X) := OX,ϵ is a field (called the function field of X).

ii) For any open subset U of X, the natural maps OX(U) −→ OX,ϵ, and OX,x −→ OX,ϵ are
injective.

Proof. i) To see that OX,ϵ is a field, we may take an arbitrary nonempty open affine subset U =
Spec(R) of X observe that OX,ϵ = R(0) which is the fractions field of R.

ii) We may reduceour proof to the case where U = Spec(R) is affine. In this case OX(U) = R −→
Frac(R) = OX,ϵ is injective.

Corollary 2.5.3 Let X be an integral scheme, W ⊆ U be open subsets of X, then the restriction map
OX(U) −→ OX(W) is injective.

We say that an element f ∈ k(X) is defined (or regular) in the point x if f ∈ OX,x.

Proposition 2.5.13 Let X be an integral scheme and let f ∈ k(X). The set U f := {x ∈ X | f ∈ OX,x}
where f is defined, is open.

Proof. Let x ∈ U f and let V := Spec(R) be an affine neighbourhood of x. Consider the ideal I f :=
{a ∈ R | a f ∈ R}. If P is a prime ideal of R, then f ∈ RP if and only if I f ̸⊆ P that is, V(I f ) is the
complement of U f ∩ Spec(R).

Proposition 2.5.14 Let X be an integral scheme with function field k(X). Then

OX(U) =
⋂

x∈U

OX,x = { f ∈ k(X) | f can be represented as
g

h
, where h(x) ̸= 0, ∀x ∈ U}(⊆ k(X)).

Proof. Clearly, we have OX(U) ⊆ ⋂
x∈U OX,x. Conversely, by the sheaf condition, and the injectivity

proved in lemma 2.5.2 ii), we may assume that U = Spec(R) is an affine open. Then we are reduced
to prove that R =

⋂
P∈Spec(R) Rp, seen as a subring of Frac(R). Indeed, for f ∈ Frac(R) such that

f ∈ ⋂
P∈Spec(R) RP, then for P ∈ Spec(R), there exists (aP, bP) ∈ R× (R \ P) such that f = aP

bP
. As

R is integral domain, we deduce then f bP ∈ R. If we take {bP, P ∈ Spec(R)}, which generates the unit
ideal. So one can find cP ∈ R, almost all zero, such that 1 = ∑P cPbP, so f = ∑P cP f bP = ∑P cpaP.
This gives the result.

Remark 2.5.5 If X = Spec(R), then

1) OX(D( f )) = { a
f m | a ∈ R, m ≥ 0} ⊆ Frac(R).

2) OX,x = { f
g | f , g ∈ R, g /∈ Px}.

Examples 2.5.4 1) The function field of Am
k = Spec(k[T1, . . . , Tm]) is k(T1, . . . , Tm).
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2) The function field of Spec(Z) is Q.

Let X be an integral scheme of finite type. We can study the dimension of X in terms of the function field:

Proposition 2.5.15 Let X be be integral scheme of finite type over field K with function field k(X).
Then

1) dim(X) = tr.degK(k(X)).

2) For any open subset U of X, we have dim(X) = dim(U).

3) If Z is a closed subset of X, then

codim(Z, X) = in f {dim(OX,z) | z ∈ Z} and dim(X) = dim(Z) + codim(Z, X).

In particular, for a closed point x of X, we have dim(X) = dim(OX,x).

Proof. 1) We may assume that X = Spec(R) is affine X. Since X is of finite type, then R is
a finitely generated K-algebra, with the quotient field K := k(X). By theorem 1.2.2, we have
dim(R) = tr.degK(Frac(R)), and by proposition 2.4.5, we have dim(R) = dim(Spec(R)). So,
dim(X) = tr.degK(Frac(R)).

2) Let U be an open subset of X. As X and U have the same function field, and by 1) dim(U) =
dim(X).

3) We may assume that X = Spec(R), where R is a finitely generated K-algebra and then use the
formula dim(R/P) + ht(P) = dim(R) for any prime ideal of R.

Example 2.5.2 dim(Pm
k ) = dim(Am

k ) = m.

2.5.5 Normal schemes

A normal domain is a domain which is integrally closed in its field of fractions. Recall that a ring R is
said to be normal if all its local rings are normal domains. Thus it makes sense to define a normal scheme
as follows.

Definition 2.5.9 Let X be a scheme.

i) We say that X is normal at x ∈ X if the local ring OX,x is a normal domain.

ii) We say that X is normal if its is irreducible and normal at all x ∈ X.

Proposition 2.5.16 Let X be a scheme. The following are equivalent.

1) X is normal.

2) For every open U ⊆ X the ring OX(U) is a normal domain.

Proof. 1)⇒ 2) Suppose that X is normal. Let U be an open of X. The scheme X integral, so OX(U)
is an integral domain. We may assume that U is affine, i.e., U = Spec(R) for some ring R. As X is
normal then U is normal, so for any prime ideal of R, the localization RP is normal. So R is normal.
Hence OX(U) is a normal domain.
2)⇒ 1) Let x ∈ X, and let U be an open neighborhood of x. Then OX(U) is a normal domain. So, OX,x

is normal domain. Hence X is normal at x.

Corollary 2.5.4 If X is normal. Then :
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i) There exists an affine open covering X =
⋃

i∈I Ui such that each OX(Ui) is normal.

ii) There exists an open covering X =
⋃

i∈I Xi such that each open subscheme Xi is normal.

Example 2.5.3 Am
k and Pm

k are normal schemes.

Proposition 2.5.17 Let X be a normal scheme. Then X is reduced.

Proof. Let x ∈ X. Since OX,x is a normal domain, then OX,x is domain, so the only nilpotent element
of OX,x is 0, so X is reduced.

Definition 2.5.10 Let f : X −→ Y be a morphism of schemes. We say that f is dominant if the image
of f is dense in Y.

If X and Y are integral, f is dominant is equivalent to saying that the generic point of X maps to the
generic point of Y. In this case, f ♯ induces a map from the stalk OY,β to OX,ϵ, where ϵ and β are the
generic points in X and Y, respectively. But by lemma 2.5.2 the stalks at the generic points are the
function fields k(X) and k(Y). Hence we obtain a map ψ♯ : k(Y) −→ k(X), which is injective.

Proposition 2.5.18 Let f : X −→ Y be a morphism of integral schemes. Then the following are
equivalent :

1) f is dominant.

2) For every affine open subsets U ⊆ X, V ⊆ Y such that f (U) ⊆ V, the ring homomorphism
f ♯ : OY(V) −→ OX(U) is injective.

3) For all x ∈ X, the local homomorphism f ♯x : OY, f (x) −→ OX,x is injective.

Proof. 1)⇔ 2) We may assume that U = X = Spec(R), and V = Y = Spec(A) and that f is induced
by a homomorphism ψ : A −→ R of integral domains. We see that f maps the generic point to the
generic point if and only if ψ−1(0) = (0) which holds true if and only if ψ is injective.
2)⇒ 3) Let x ∈ X Taking U be an affine open neighborhood of x, and V also an affine open neighborhood
of f (x) such that f (U) ⊆ V. By ii) f ♯ : OY(V) −→ OX(U) is injective. Then by proposition 2.1.2 the

induced morphism to stalks is also injective. Hence f ♯x : OY, f (x) −→ OX,x is injective.

3)⇒ 2) Suppose that for any x ∈ X, f ♯x : OY, f (x) −→ OX,x is injective. By proposition 2.1.2 f ♯

is injective, so for any affine open U of X, and affine open subset V of Y such that f (U) ⊆ V, f ♯ :
OY(V) −→ OX(U) is injective.

Theorem 2.5.2 Let X be an integral scheme, then there is a normal scheme X̃, and a morphism π :
X̃ −→ X satisfying the following universal property : For any dominant morphism g : Y −→ X from a
normal scheme Y, there is a unique morphism h : Y −→ X̃ such that g = πX ◦ h.

Proof. See [17, Proposition 1.22, p.120].

Definition 2.5.11 The scheme X̃ over X is called the normalization of X.

Remark 2.5.6 X and X̃ have the same dimension.

Example 2.5.4 Let X = Spec(R) where R = k[X, Y]/(y2 − X3). There is an isomorphism of k-
algebras between R and k[t2, t3] given by sending X 7−→ t2 and Y 7−→ t3. It is clear that k[t2, t3] is a
domain with fraction field K = k(t). Moreover, the normalization of R equals R̃ = k[t]. The inclusion
R −→ R̃ induces the normalization morphism f : A1

k −→ X.
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2.5.6 Separated Schemes

Recall that a topological space X is separated (or Hausdorff) if and only if the diagonal subset ∆(X) of
X × X is a closed with respect to the product topology. The separation property fails on the underlying
space of a scheme. So, one needs to refine the notion of separation to suite this context. For this, given
a scheme X over a scheme S (with a morphism of schemes f : X −→ S), let’s consider the diagonal
morphism

∆X/S : X −→ X×S X

defined to be the unique morphism of schemes such that

πi ◦ ∆X/S = idX, i = 1, 2, where π′is denote the two projections X×S X → X.

In terms of diagram we have the following diagram

X

X×S X X

X S

∆X/S
π2

π1

f

f

Definition 2.5.12 Let f : X −→ S be a morphism of schemes. f is called an immersion if f factorizes
as X −→ U −→ S, where X −→ U is closed immersion and U −→ S is open immersion.

Lemma 2.5.3 Let f : X −→ Y be an immersion of schemes. Then f is closed immersion if and only if
f (X) ⊆ Y is a closed subset.

Proof. See [30, Lemma 26.10.4].

Lemma 2.5.4 If X and S are affine schemes. Then ∆X/S : X −→ X×S X is a closed immersion.

Proof. Let X = Spec(R), S = Spec(A) and f : X −→ Y be a morphism. f is separated. ∆X/S :
Spec(R) −→ Spec(R)×Spec(A) Spec(R) ∼= Spec(R⊗A R) is induced by the canonical homomorphism
of rings ∆ : R⊗A R −→ R. The latter is surjective, hence ∆X/S is a closed immersion.

Proposition 2.5.19 Let X be a scheme over S. Then ∆X/S is an immersion.

Proof. See [30, Lemma 26.21.2].

Let R be a ring, then the natural ring homomorphism Z → R, n 7→ n · 1R, induces a morphism of
schemes Spec(R) → Spec(Z) and so any affine scheme can be considered as a Z-scheme in a natural
way. More generally, any scheme X can be considered as Z scheme in a canonical way.

Definition 2.5.13 Let S be a scheme, and X an S-scheme with morphism f : X −→ S.

i) We say that f is separated if the diagonal morphism ∆X/S : X −→ X ×S X is closed immersion.
In this case we say that X is separated S-scheme or X separated over S.

ii) A scheme is said to be separated if X separated over Spec(Z).

Example 2.5.5 Any morphism of affine schemes is separated. In particular any affine scheme is sepa-
rated.
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Proposition 2.5.20 Let f : X −→ S be a morphism of schemes. Then f is separated if and only if
∆X/S(X) is a closed subset of X×S X.

Proof. If f is separated, then ∆X/S is a closed immersion. So ∆X/S(X) identifies with a closed of X×S X
(see definition 2.3.7). Hence ∆X/S(X) is a closed. Conversely, as ∆ : X −→ X ×S X is an immersion
(see proposition 2.5.19), and ∆X/S(X) is closed. Then by lemma 2.5.3 ∆X/S is a closed immersion.

Proposition 2.5.21 Let f : X −→ S be a morphism of schemes with S = Spec(R) is affine. The
following are equivalent :

1) f is separated.

2) For every pair of affine opens U, V ⊆ X, U ∩V is again affine. Moreover, the canonical homomor-
phism OX(U)⊗OX(V) −→ OX(U ∩V) is surjective.

3) There exists an open affine covering X =
⋃

i∈I Ui such that Ui ∩Uj is affine and the canonical
homomorphism OX(Ui)⊗OX(Uj) −→ OX(Ui ∩Uj) is surjective.

Proof. See [17, Proposition 3.6, p.100].

Theorem 2.5.3 i) Open and closed immersions are separated.

ii) Let f : X −→ Y, and g : Y −→ Z be two separated morphisms, then g ◦ f is separated. In
particular, immersions are separated.

iii) Separated (resp. quasi-separated) morphisms are stable under base change.

iv) Let f : X −→ Y, and g : Y −→ Z be morphisms such that g ◦ f is separated (resp. quasi-
separated). Then f is separated (resp. quasi-separated).

v) A fibre product of separated (resp. quasi-separated) morphisms is separated (resp. quasi-separated).

Proof. See [17, Proposition 3.9, p.101].

2.5.7 Proper morphisms

In topology, a proper morphism is a morphism for which the inverse image of a compact Hausdorff†

subspace set is compact Hausdorff. As above, the lack of good separation for the Zariski topology means
one needs to use a some new notion on schemes.
Recall that a map of topological spaces f : X −→ Y is said to be closed if for any closed subset Z of X,
its image f (Z) ⊆ Y is closed.

Definition 2.5.14 Let f : X −→ Y be a morphism of schemes

i) f is said universally closed if every base change of f is a closed mapping.

ii) f is said to be proper if f is separated, of finite type, and universally closed. We say in this case
that X is proper over Y.

iii) We say that X is proper if X is proper over Spec(Z).

In i) f is said universally closed if for each morphism Z −→ Y, the projection πZ : Z ×Y X −→ Z is
closed.

†A topological space X is compact Hausdorff if X is Hausdorff space and for every open cover of X has a finite subcover.
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Examples 2.5.5 1) Closed morphisms are not stable under base change. For example, A1
k −→

Spec(k) is closed but A2
k = A1

k ×A1
k −→ A1

k, which is not closed. Indeed, the image of

V(xy− 1) is the open subset A1
k \ {0}, which is not closed.

2) Let f : R −→ A be a homomorphism of rings such that A is a finite R-module, then the induced
map Spec(A) −→ Spec(R) is proper.

Proposition 2.5.22 Let f : X −→ S be a morphism of schemes. The following are equivalent :

1) f is proper.

2) There exists an open covering S =
⋃

i∈I Ui such that f−1(Ui) −→ Ui is proper for all i ∈ I.

Proof. See [30, Lemma 29.41.2].

Theorem 2.5.4 We have the following properties :

i) Closed immersions are proper.

ii) The composition of two proper morphisms is proper.

iii) The base change of a proper morphism is still proper.

iv) The product of two proper morphisms is proper : if f : X −→ Y and g : X
′ −→ Y

′
are proper,

where all morphisms are morphisms of S−schemes, then f × g : X×S X
′ −→ Y×S Y

′
is proper.

Proof. See [12, Corollary 4.8, p.102].

2.5.8 Projective Schemes

We know that projective varieties are a special important class of varieties that are not affine, but still can
be described globally without using glueing techniques. They arise from looking at homogeneous ideals,
i.e., graded coordinate rings. A completely analogous construction exists in the category of schemes,
starting with a graded ring and looking at homogeneous ideals in it.

The Proj construction

The functor Spec is the basic operation going from rings to schemes. We describe a related operation Proj
from graded rings to schemes.

Definition 2.5.15 Let R be graded ring of the form R = ⊕d≥0Rd and let R+ := ⊕d>0Rd.

i) We denote by Proj(R) the set of homogeneous prime ideals P ⊆ R such that P does not contain
R+. It is called the projective spectrum of R.

ii) For a homogeneous ideal J, we let

Vh(J) = {P ∈ Proj(R) | J ⊆ P}.

Remark 2.5.7 The operation Vh has properties analogous to the properties for V listed in proposition
2.2.1. So we can define a topology on Proj(R) for which the closed subsets are exactly those of the form
Vh(J), for J a homogeneous ideal of Rr. This topology is called the Zariski topology on Proj(R). Note by
definition we have Vh(R+) = ∅.
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Principals opens of Proj(R)

Recall, in the affine case a principal open of Spec(R) is defined as D( f ) := {P ∈ Spec(R) | f /∈ P} for
some f ∈ R (see definition 2.2.2). We define the principal D+( f ) of Proj(R) by

D+( f ) = {P ∈ Proj(R) | f /∈ P}

with f is homogeneous of positive degree i.e f ∈ Rd, and d > 0.

Proposition 2.5.23 Let f , g ∈ R be homogeneous of positive degree. Then

1) D+( f ) ∩ D+(g) = D+( f g).

2) The sets D+( f ) form a basis for the Zariski topology on Proj(R) when f runs through the homo-
geneous element of R of positive degree.

Proof. See [9, Proposition 10.6, p.144].

Notation. If P is a homogeneous prime ideal of a graded ring R, then R(P) will denote the elements of
degree zero in the localisation of R at the set of homogeneous elements which do not belong to P.

Definition 2.5.16 Let R be graded ring, and X = Proj(R). We define a sheaf of ringOX by considering
for any open subset U ⊆ X, all functions

s : U −→ ⨿
P∈X

R(P)

such that s(P) ∈ R(P), which are locally represented by quotients. That is given any P ∈ U there is

a, f ∈ R homogeneous elements of the same degree and an open V ⊆ U such that V ⊆ D+( f ), and
s(Q) = a

f for all Q ∈ V.

Proposition 2.5.24 Let R be graded ring and set X = Proj(R).

1) For every P ∈ X, the stalk OX,P is isomorphic to R(P).

2) For any homogeneous element f ∈ R+, we have

(
D+( f ),OX|D+( f )

)
≃ Spec(R( f )).

where R( f ) consists of all element of degree zero in the localization R f . In particular, Proj(R) is a
scheme.

Proof. See [12, Proposition 2.5, p.76].

Definition 2.5.17 Let R be a ring. The Projective n-space over R denote Pn
R is the proj of the polynomial

ring R[T0, . . . , Tn]. When R = Z we write simply Pn for Proj(Z[T0, . . . , Tn]).

Remarks 2.5.3 1) Note that Pn
R is a scheme over S = Spec(R).

2) We define the n-space Pn
S over an arbitrary scheme S as Pn

S = Pn ×Spec(Z) S.
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Some basic properties of Proj(R)

Theorem 2.5.5 Let R be a graded ring.

i) Proj(R) is separated.

ii) If R is Noetherian, then Proj(R) is Noetherian. In particular Proj(R) is compact.

iii) If R is of finitely generated over R0, then Proj(R) is a finite type over Spec(R0) is the 0-component
of R.

iv) If R is an integral domain, then Proj(R) is integral.

Proof. See [9, Proposition 10.16, p.150].

Definition 2.5.18 (Projective morphisms) Let f : X −→ Y be a morphism of schemes. We say that f is
projective if there exists an open covering Y =

⋃
i Yi such that f| f−1(Yi)

: f−1(Yi) −→ Yi can be factored
as

f−1(Yi) P
ni
Yi
= Pni ×Spec(Z) Yi Yi

j

with j a closed immersion.

Example 2.5.6 X = Pn
R −→ Spec(R) is a projective morphism.

Proposition 2.5.25 The projective space Pn
Z is separated and of finite type.

Proof. See [30, Section 27.13, Projective space].

Theorem 2.5.6 Let S be a scheme. Then any projective morphism to S is proper.

Proof. See [17, Theorem 3.30, p.108].

Corollary 2.5.5 We have the following properties :

i) Closed immersions are projective morphisms.

ii) The composition of two projective morphisms is a projective morphism.

iii) Projective morphisms are stable under base change.

iv) Let f : X −→ S and g : Y −→ S be projective morphisms, then X ×S Y −→ S is a projective
morphism.

Definition 2.5.19 (projective schemes) Let X be a scheme over S. We say that X is projective over S if
the structure morphism f : X −→ S is projective.
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2.6 Tangent spaces

Let X be a scheme and x ∈ X, mx be the maximal ideal of OX.x, and k(x) = OX,x/mx be the residue
field . It is clear that mx/m2

x is a vector space over k(x).

Definition 2.6.1 Let X be a scheme, and let x ∈ X. Zariski tangent space of X at x is the dual

TxX =
(
mx/m2

x

)∨
.

Remarks 2.6.1 1) For any point x ∈ X, if the local ring OX,s is Noetherian, Nakayama’s lemma
shows that dimk(x)(mx/m2

x) is the minimal number of generators of mx (see remark 1.5.2). In

particular, if X is locally Noetherian, dimk(x)(TxX) is finite.

2) For any open neighborhood U of x, we have TxX = TxU.

3) Let f : X −→ Y be a morphism of schemes, x ∈ X and y = f (x). Then f ♯x : OY,y −→ OX,x

canonically induces a k(x)-homomorphism of vector spaces

Tx f : TxX −→ TyY⊗k(y) k(x)

called the tangent map of f at x.

Proposition 2.6.1 Let X be a scheme. Then :

1) If X is locally Noetherian, then for any x ∈ X, we have dimk(x)(TxX) ≥ dim(OX,x).

2) Let f : X −→ Y and g : Y −→ Z be morphisms of schemes. Then Tx(g ◦ f ) =
(
Tf (y) ⊗ idk(x)

)
◦

Tx f

Proof. See [17, Proposition 2.2, p.126]

Definition 2.6.2 Let X be a locally Noetherian scheme and x ∈ X be a point. We say that x is a regular
point of X if dim(OX,x) = dimk(x)(TxX). If x is not regular, we say that it is a singular point.

Proposition 2.6.2 Let X be a locally Noetherian scheme. Then X is regular if and only if for any x ∈ X,
dim(OX,x) = dimk(x)(TxX).

Proof. X is regular if and only if for all x ∈ X, OX,x is regular if and only if for all x ∈ X,
dimk(x)(TxX) = dim(OX,x).

2.7 Modules over schemes

So far we discussed general properties of sheaves, in particular, of rings (see section 2.2.2). Similarly as
in the module theory in abstract algebra, the notion of sheaves of modules allows us to increase our un-
derstanding of a given ringed space, and to provide further techniques. There are particularly important
notions, namely, quasi-coherent and coherent sheaves. They are analogous notions of the usual modules
(respectively, finitely generated modules) over a given ring. They also generalize the notion of vector
bundles.
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2.7.1 Sheaves of modules

Definition 2.7.1 Let (X,OX) be a ringed space. A sheaf of OX-modules, or simply an OX-modules, is
a sheaf F on X such that

i) The group F (U) is an OX(U)-module for each open set U ⊆ X.

ii) For any V ⊆ U opens subsets of X he restriction map resU,V : F (U) −→ F (V) is compatible
with the module structure via the rings homomorphism OX(U) −→ OX(V). In other words the
natural diagram below is required to commute

F (U)×OX(U) F (U)

F (V)×OX(V) F (V)

resU,V

where vertical arrows represent restrictions maps and horizontal ones multiplication maps.

Definition 2.7.2 A morphism ψ : F −→ G ofOX-modules is a morphism of sheaves such that the map
ψ(U) : F (U) −→ G(U) is an OX(U)-module homomorphism for every open U ⊆ X.

Remarks 2.7.1 i) We obtain a category of OX-modules, which we denote byModX.

ii) Let F be an OX-module and x ∈ X, then the stalk Fx carries a natural OX,x-module structure.
The k(x)-vector space F (x) := Fx ⊗OX,x

k(x) is called the fiber of F over x.

Example 2.7.1 Let (X,OX) be a ringed space, F , G be OX-modules, and let ψ : F −→ G be a
morphism. Then :

1) "ker(ψ)", ”Im(ψ)” are again OX-modules.

2) If F ⊆ G is an OX-submodule, then the quotient sheaf G/F (see definition 2.1.13) is an OX-
module.

Definition 2.7.3 Let F ,G be two OX-modules

i) We denoted the group morphisms from F to G by HomX(F ,G) (or HomOX
(F ,G)).

ii) For U ⊆ X. The presheaf
U 7−→ HomOX

(F|U,G|U)
is a sheaf and we will call it the sheaf Hom.

iii) We may define the direct sum as
F ⊕ G := F × G.

More generally, Given a any set I and for each i ∈ I aOX-module Fi. We can form the direct sum

⊕i∈IFi

which is the sheafification of the presheaf that associates to each open U the direct sum of the
modules Fi(U).
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Tensor product

LetF ,G be sheaves of abelien groups on X. For any U ⊆ X open subset. We consider the correspondence

U 7−→ F (U)⊗OX(U) G(U).

This defines a presheaf on X.

Definition 2.7.4 The sheaf associated to the presheaf U 7−→ F (U)⊗OX(U) G(U) is called the tensor
product. We denote it by F ⊗OX

G. When there is no confusion, we write simply F ⊗ G.

Properties 2.7.1 Let F ,G be two OX-modules.

i) Stalk (F ⊗ G)x at the point x is naturally isomorphic to tensor product Fx ⊗OX,x
Gx.

ii) Tensor product is right exact in the category of OX-modules i.e if F is an OX-module and if

F1 −→ F2 −→ F3 −→ 0

is an exact sequence of OX-modules, then the induced sequence

F1 ⊗OX
F −→ F2 ⊗OX

F −→ F3 ⊗OX
F −→ 0.

is exact.

iii) (Adjunction between Hom and ⊗) For any OX-modules F ,G there is natural isomorphism

HomOX
(F , HomOX

(
G,H)

)
≃ HomOX

(F ⊗ G, H).

(See [9, 10.10, p.187]).

Pushforward and Pullback

Let f : X → Y be a continuous map between topological spaces. In section 2.1.2, we introduced two
functors between the categories ShX and ShY.

∗ The first functor :
f∗ : ShX −→ ShY

F 7−→ f∗F
defined by f∗F (U) = F ( f−1(U)) for any U open of Y. This functor is called the pushforward
(see definition 2.1.14).

∗ The second functor :
f−1 : ShY −→ ShX

G 7−→ f−1G
and f−1G(U) = ( fPG)†(U) for any open U of X (see definition 2.1.17)

In this paragraph, we parallel these two constructions when f is a morphism of schemes to obtain
functors f∗ and f ∗ betweenModX andModY.
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Pushforward

Let f : (X,OX) −→ (Y,OY) be a morphism of schemes. Let F be an OX-module, then for each open
U ⊆ Y, f∗F (U) is a module over f∗OX. f ♯ : OY −→ f∗OX equips f∗F with a natural structure of
OY-module.

Definition 2.7.5 The aboveOY-module f∗F is called the direct image (or the pushforward) of F under
f .

Remarks 2.7.2 i) This construction is clearly functorial in the sheaf F , and gives a functor f∗ :
ModX −→ModY.

ii) The pushforward is functorial in the morphism f in the sens that ( f ◦ g)∗ = f∗ ◦ g∗.

Proposition 2.7.1 Let f : (X,OX) −→ (Y,OY) be a morphism of schemes. The functor

f∗ :ModOX
−→ModOY

is left exact.

Proof. See [30, Section 18.14, Lemma 18.14.3].

Pullback

Let f : (X,OX) −→ (Y,OY) be a morphism of schemes.
Recall that if G is a sheaf on Y, the inverse image f−1G is by the sheaf canonically associated to the
presheaf

fpG(U) = lim−→
f (U)⊆V

G(V)

(see definition 2.1.16, definition 2.1.17). When G is an OY-module, this sheaf is naturally an OX an
f−1OY-module and we can make f−1G into an OX-module using the map f−1OY −→ OX.
We define :

f ∗G := f−1G ⊗ f−1OY
OX.

Definition 2.7.6 The OX-module f ∗G is called the pullback of G under f .

Remarks 2.7.3 i) In particular, f ∗OY = f−1OY ⊗ f−1OY
OX = OX.

iii) As in the case of the pushforward, we also get here a functor f ∗ :ModOY
−→ModOX

.

Proposition 2.7.2 Let X be a scheme, for any x ∈ X we have

( f ∗G)x = G f (x) ⊗OY, f (x) OX,x

Proof. The stalks commutes with sheafification and tensor product (see properties 2.7.1 i)), and ( f−1G)x =
G f (x) (see lemma 2.1.4). So

( f ∗G)x =
(

f−1G ⊗ f−1OY
OX

)
x

= ( f−1G)x ⊗ f−1OY,x
OX,x

= G f (x) ⊗OY, f (x)
OX,x.

Proposition 2.7.3 Let f : (X,OX) −→ (Y,OY) be a morphism of schemes. The functor

f ∗ :ModOY
−→ModOX

is right exact.

Proof. See [30, Section 18.14, Lemma 18.14.3].
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Global generation

Let (X,OX) be a ringed space, F be an OX-module, U be an open of X. It is clear that Fx is an
OX,x-module (see remarks 2.7.1).

Definition 2.7.7 i) F is globally generated at x ∈ X if the image of F (X) −→ Fx generates Fx as
an OX,x-module. In other words, F (X)⊗OX(X) OX,x −→ Fx is surjective.

ii) We say that F is globally generated if F is globally generated at every point x ∈ X.

Remark 2.7.1 If OX is globally generated, then any direct sum
⊕

i∈I OX is also globally generated.

Proposition 2.7.4 Let F be an OX-module. Then F is generally generated if and only if there is some
set I such that there is an epimorphism

⊕
i∈I OX −→ F .

Proof. See [17, Lemma 1.3, p.158].

2.7.2 Quasi-coherent modules

In this section, we introduce the notion of quasi-coherent OX-module. This notion is very useful in
algebraic geometry, since quasi-coherent modules on a scheme have a good description on any affine
open.

Quasi-coherent sheaves

Definition 2.7.8 Let (X,OX) be a ringed space and let F be a sheaf of OX-modules. We say that F
is a quasi-coherent sheaf of OX-modules if for every point x ∈ X there exists an open neighbourhood
x ∈ U ⊆ X such that F|U is isomorphic to the cokernel of a map

⊕

j∈J

OU −→
⊕

i∈I

OU.

Note that the direct sum of two quasi-coherent OX-modules is quasi-coherent OX-modules.
It is not true in general that an infinite direct sum of quasi-coherent OX-modules is quasi-coherent (see
[30, chap. 17.10.9, Example 10.9]).

Notation. We will denote The category of quasi-coherent OX-modules by QCohOX
.

Example 2.7.2 The structure sheaf OX is quasi-coherent.

Proposition 2.7.5 Let f : (X,OX) −→ (Y,OY) be a morphism of ringed spaces. The pullback f ∗G of
a quasi-coherent OY-module is quasi-coherent.

Proof. See [9, Proposition 14.14, p.207].

2.7.3 Sheaves associated to modules

Since thinking about affine schemes is supposed to be equivalent to thinking about rings (the two cate-
gories are equivalent, see theorem 2.3.2), we would like our thinking about sheaves of modules on affine
schemes to be equivalent to thinking about modules over rings. In this section, we will define the sheaf to
modules.

Definition 2.7.9 Let R be a ring and let M be an R-module. We define the sheaf associated to M on
X = Spec(R), denoted by M̃, as follows. For any open subset U of X we define
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M̃(U) :=
{

s : U −→ ⨿P∈X MP | for all P ∈ U, we have s(P) ∈ MP, and for all P ∈ U there is a ∈
M, r ∈ R, and an open neighbourhood V ⊆ U such that V ⊆ D(r) and s(Q) = a

r for all Q ∈ V
}

.

Remark 2.7.2 The sheaf M̃ carries an obvious OX-module structure (see [12, Proposition 5.2, p.110]).
The ∼ is functorial in M. For any R-module homomorphism f : M −→ N there is an obvious way
of obtaining an OX-module homomorphism f̃ : M̃ −→ Ñ. Indeed, The maps fr : Mr −→ Nr are
OX(D(r))-modules homomorphisms compatible with localization maps i.e., the following diagram

Mr Nr

Md Nd

fr

fd

is commutative, and thus induce a map between M̃ and Ñ. Moreover, one has f̃ ◦ g = f̃ ◦ g̃. So We
have thus defined a functor from the category of R-modules to the category of OX-modules.

Proposition 2.7.6 Let R be a ring and M be an R-modules. The sheaf M̃ on Spec(R) has the following
three properties :

1) For all r ∈ R, we have a canonical isomorphism

M̃(D(r)) ≃ Mr.

2) If d ∈ R and d ∈ (r), then there is a commutative diagram

M̃(D(r)) M̃(D(d))

M̃r M̃d

≃ ≃

where the vertical isomorphisms one from 1).

3) There is natural isomorphism M̃P ≃ MP for all P ∈ Spec(R). This a natural isomorphism fits in
a commutative diagram

M̃P MP

M̃(Spec(R)) M

≃

≃

Here the vertical morphisms are the natural ones and the lower horizontal ones come from 1).

Proof. The proof of this Proposition is similar to the proof of proposition 2.3.1. For more details, see [17,
Proposition 5.10].

Theorem 2.7.1 The functor M −→ M̃ from the category of R-modules to the category of OX-modules
where X = Spec(R) is exact and fully faithful.

Proof. See [9, Theorem 14.4, p.195].
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Tensor products, Pushforward and Pullback

Proposition 2.7.7 Let R be a ring and let X = Spec(R). Also let ψ : R −→ A be a ring homomor-
phism, and f : Spec(A) −→ Spec(R) be the corresponding morphism of spectra. Then :

1) If M and N are two R-modules. Then M̃⊗R N ≃ M̃⊗OX
Ñ.

2) The A-module M can be considered as an R−module via the map ψ : R −→ A, and we denote
this A-module by MR. We have

f∗M̃ = M̃R.

3) Let M be an R-module. Then

f ∗M̃ = M̃⊗R A.

4) If {Mi} is any family of R-modules, then
⊕̃

i Mi =
⊕

i M̃i.

Proof. See [12, Proposition 5.2, p.110].

Theorem 2.7.2 M̃ is quasi-coherent sheaf.

Proof. See [9, Proposition 13.8, p.192].

2.7.4 Coherent sheaves

Definition 2.7.10 Let X be a ringed space, and let F be a sheaf of OX-module.

i) We say that F is finitely generated if for every x ∈ X, there exist an open neighborhood U of x, an
integer n ≥ 1 and a surjective homomorphism on On

X|U
−→ F|U.

ii) We say that F is coherent if it is finitely generated, and if for every every open subset U of X, and
for every homomorphism β : On

X|U
−→ F|U ,Let (X,OX) the kernel Ker(β) is finitely generated.

Theorem 2.7.3 Let X be a scheme. Let F be a quasi-coherentOX-module. Let us consider the following
properties:

i) F is coherent.

ii) F is finitely generated.

iii) For every affine open subset U of X, F (U) is finitely generated over OX(U).

Then i)⇒ ii)⇒ iii). Moreover, if X is locally Noetherian then these properties are equivalent.

Proof. See [17, Proposition 1.11, p.161].

Coherence of pushforwards

Proposition 2.7.8 Let f : X −→ Y be a finite morphism of schemes.

1) If F be a quasi-coherent sheaf on X, then f∗F is quasi-coherent on Y.

2) If X and Y are Noetherian, f∗F is even coherent if F is.

Proof. See [9, Theorem 14.15, p.208].

Notation. The category of coherent OX-modules is denoted Coh(OX).
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2.8 Some cohomology interpretations

In this section, we consider the theory of cohomology in algebraic geometry. It is an extremely rich and
varied theory. In this section we are interested in one of the most elementary cohomology theories, the
Čech cohomology of quasi-coherent sheaves.

2.8.1 Some homological algebra

Complexes of abelian groups

∗ Recall that a complex of abelian groups A• is a sequence of groups Ai together with maps between
them

· · · Ai−1 Ai Ai+1 · · ·di di+1

such that di+1 ◦ di = 0 for each i.

∗ A morphism of complexes A• B•
f •

is a collection f •i : Ai −→ Bi of maps making
the following diagram commutative :

· · · Ai−1 Ai Ai+1 · · ·

· · · Bi−1 Bi Bi+1 · · ·

di di+1

ηi ηi

f •i−1 f •i f •i+1

∗ We say that an element σ ∈ Ai is a cocycle if it lies in the kernel of the map di, i.e di(σ) = 0.

∗ A coboundary is an element in the image of di−1, i.e σ = di−1(τ). For some τ ∈ Ai−1. These form
subgroups of An, denoted by Zi(A•)‚ and Bi(Ai)‚ respectively. Since di(di−1)(x) = 0 for all x,
all coboundaries are cocycles, so that Bi(A•) ⊆ Zi(A•).

∗ The cohomology groups of the complex A•‚ are set up to measure the difference between these two
notions. We define the i-The cohomology group as the quotient group

Hi(A•) := Zi(A•)/Bi(A•).

∗ An exact sequence of complexes noted : 0 A• B• C• 0
f • g•

is the given

for all i of an exact sequence of abelian groups 0 Ai Bi Ci 0
f •i g•i

.

∗ Given the previous definition, we deduce morphisms f̃ •i : Hi(A•) −→ Hi(B•)

Theorem 2.8.1 We consider the exact sequence of complexes 0 A• B• C• 0
f • g•

.
Then there is a long exact sequence of cohomology groups

Hi(A•) Hi(B•) Hi(C•) Hi+1(A•) Hi+1(B•) Hi+1(C•)

Proof. See [26, Proposition D.1.10, p.503].
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Complexes of sheaves

Remark 2.8.1 The definitions and arguments of the previous subsection apply much more generally (to
any abelian category). In particular, we make the following sheaf analogue.

Definition 2.8.1 A complex of sheaves F •‚ is a sequence of sheaves with maps between then

· · · Fi−1 Fi Fi+1 · · ·di−2 di−1 di di+1

such that di+1 ◦ di = 0 for each i.

Definition 2.8.2 Given a complex, we define the cohomology sheaves Hp(F •)‚ as Ker(dp)/Im(dp−1).

As in theorem 2.8.1, a short exact sequence of complexes of sheaves gives rise to a long exact sequence of
cohomology sheaves.

2.8.2 The Čech cohomology

Notation. Let X be a topological space, and let F be a sheaf of abelien group on X. Let U := {Ui}i∈I

be an open cover of X. We denote by Uij = Ui ∩Uj and more generally Ui0···ip
= Ui0 ∩ · · · ∩Uip

.

Definition 2.8.3 i) For all p ≥ 1, we denoted by

Cp(U ,F ) := ∏
i0<···<ip

F (Ui0···ip
) = ∏

i0<···<ip

F (Ui0 ∩ · · · ∩Uip
).

We have thus constructed a complex of abelian groups C•(U ,F ).

ii) The elements of Cp(U ,F ) are called cochains. Cp(U ,F ) is called also group of p-cochains with
values in F .

iii) We also define the differential :

δp : Cp(U ,F ) −→ Cp+1(U ,F )
s 7−→ δs

by

(δps)i0···ip+1
=

p+1

∑
k=0

(−1)ksi0···îk···ip|Ui0···îk ···ip
.

Note that for p ≥ 0, we have δp+1 ◦ δp = 0.

Notation. ∗ ZP(U ,F ) = {σ ∈ Cp(U ,F )|δp(s) = 0}

∗ Bp(U ,F ) =
{

δ(Cp−1(U ,F )) if p > 0
0 otherwise

Definition 2.8.4 The p-th Čech cohomology of F with respect to U is defined as

Hp(U ,F ) = ZP(U ,F )/Bp(U ,F ) = ker(δp)/Im(δp−1)

Remark 2.8.2 Note that a sheaf homomorphism ψ : F −→ G induces a mapping of Čech cohomology
groups, so we obtain functors F −→ Hp(U ,F ) from abelian sheaves to abelian groups.
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Proposition 2.8.1 For any open cover U of X we have :

H0(U ,F ) = Γ(X,F ).
Proof. See [9, Theorem 17.13, p.258].

Examples 2.8.1 1) Let X = S1 be the unit circle and equip it with a standard covering U =
{U1, U2}, consisting of two intervals (intersecting in two intervals S and N) and let F = ZX be
the constant sheaf. Here we have

∗ C0(U ,F ) = ZX(U1)×ZX(U2) ≃ Z×Z

∗ C1(U ,F ) = ZX(U1 ∩U2) ≃ Z×Z.

∗ The map δ0 : C0(U ,F ) −→ C1(U ,F ) is the map ϕ : Z2 −→ Z2 given by δ0(x, y) =
(y− x, y− x).
Hence H0(U ,F ) = ker(δ0) = Z(1, 1) ≃ Z and H1(U ,F ) = Coker(δ0) = (Z ×
Z)/Z(1, 1) ≃ Z.

2) Let X be an irreducible topological space. Then for any finite covering U of X we have for a constant
sheaf AX

Hp(U , AX) = 0

for p > 0. (See [9, Proposition 13.11, p.251]).

The inductive system of Hp(U ,F )
We will describe in this paragraph the inductive system which will allow us to define the Hp(U ,F ).
Definition 2.8.5 (Refinement function) If U ⊆ Ω, with U = (Vj)j∈J and Ω = (Ui)i∈I then there
exists a function τ called refinement function τ : J −→ I such that Vj ⊆ Uτ(j) used to define maps :

τp : Cp(Ω,F ) −→ Cp(U ,F )
(sj0···jp

) 7−→
(
sτ(j0)···τ(jp)

)
|Vj0···jp

Theorem 2.8.2 Let τ, τ̃ : J −→ I be two refinement functions such that Vj ⊆ Uτ(j) ∩Uτ̃(j). Then τ

and τ̃ induces the same function ϕΩ
U : Hp(Ω,F ) −→ Hp(U ,F ).

Proof. See [30, Section 20.15 Refinements and Čech cohomology].

Long exact sequence in cohomology

Theorem 2.8.3 Let F ,G and H be sheaves on X and F Gα
and G Hβ

be two mor-

phisms of sheaves.

If for any covering Ω of X there exists a covering Ω
′ ⊆ Ω such that for any finite intersection W of open

sets of Ω
′

the following sequence

0 F (W) G(W) H(W) 0
α β

is exact. Then the following infinite sequence

0 H0(X,F ) H0(X,G) H0(X,H) H1(X,F ) · · ·

· · · Hp(X,F ) HP(X,G) Hp(X,H) Hp+1(X,F ) · · ·

α̃ β̃ ∆

α̃ β̃ ∆

is exact.
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Proof. See [9, Proposition 17.2, p.251].

Theorem 2.8.4 Let X be a topological space and let F be a sheaf on X.

i) The Čech cohomology groups are functors Hi(X, .) : AbShX −→ AbG.

ii) (Leray’s theorem) If F is a sheaf and U is a covering such that Hi(Ui1 ∩ · · ·Uip
,F ) = 0 for all

i > 0 and multi-indices i1 < · · · < ip, then

Hi(X,F ) = Hi(U ,F ).

Proof. See [9, Theorem 13.13, p.254].

Theorem 2.8.5 (Serre) Let R be a Noetherian ring, let X = Spec(R) and let F be a quasi-coherent
sheaf on X. Then

Hp(X,F ) = 0.

for all p > 0.

Proof. See [9, Theorem 14.1, p.256].

Corollary 2.8.1 Let X be a Noetherian affine scheme and

0 F G H 0

be an exact sequence of OX-modules with F is quasi-coherent. Then the following sequence

0 F (X) G(X) H(X) 0

is exact.

Proof. See [9, Corollary 14.5, p.202].

Theorem 2.8.6 (Grothendieck) Let X be a Noetherian topological space of dimension m, and let F be
an abelian sheaf on X. Then

Hp(X,F ) = 0

for all p > m.

Proof. See [30, Proposition 20.20.7 Grothendieck].

2.9 Divisors defined by means of schemes

We previously described in the first chapter divisors on curves. We give here the interpretation (and
generalization) of these divisors in the language of schemes. We present then in this section Weil and
Cartier Divisors and some relations between them.
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2.9.1 Cartier Divisors

Definition 2.9.1 (Sheaf of meromorphic functions)
Let R be a commutative ring. We denote byR(R) for the set of nonzero divisors of R. Let X be a scheme,
the sheafRX is defined as follows : For any open subset U ⊆ X

RX(U) := { f ∈ OX(U) | ∀x ∈ U, fx ∈ R(OX,x)}.

Let K′X to be the presheaf on X defined by K′X(U) := RX(U)−1OX(U) and KX to be the sheafification

of K′X. We call KX the sheaf of meromorphic functions on X.

Remarks 2.9.1 i) KX is called also the sheaf of total quotient rings of OX.

ii) Note that if U is an affine open subset of X, thenRX(U) = R(OX(U))

iii) Note that there is a natural morphism of sheaves OX −→ KX, which is a monomorphism because
of the nonzerodivisor condition.

Example 2.9.1 Let k is a field and Y = Spec(k[x]). Then OY(U) is the ring of rational functions on
an open set U in Y. The image of any nonzero f ∈ OY(U) in OY,x = k[x]p (x corresponds to a prime
p ⊆ k[x]) is a nonzerodivisor for any x, since the localization of an integral domain is again an integral

domain, so KY(U) is the fraction field of OY(U), which is clearly k(x). As such, K′Y = KY is just the
constant sheaf k(x), which is also isomorphic to OY,ϵ = k[x](0), where ϵ is the generic point (0).

Remark 2.9.1 In fact, for any integral scheme X, KX is the constant sheaf associated to OX,ϵ, by the
same argument in the example 2.9.1.

Definition 2.9.2 Let K×X be the subsheaf of invertible elements of KX andO×X be the subsheaf of invert-
ible elements ofOX. We denoteK×X /O×X to be the sheafification of the presheaf U −→ K×X (U)/O×X (U).
Then there is a natural morphism K×X −→ K×X /O×X .

i) The group of Cartier divisors on X is defined to be CaDiv(X) := H0(X,K×X /O×X ).

ii) The natural morphism above yields a homomorphism

div : H0(X,K×X ) −→ H0(X,K×X /O×X ).

A Cartier divisor D is said to be a principal Cartier divisor if D ∈ Im(div). Note that a principal
divisor can be described with the singleton collection {(X, f )} for f ∈ K∗X(X).

iii) We denote the group law on CaDiv(X) as addition. For any D, D
′ ∈ CaDiv(X), we say D and

D
′

are linearly equivalent, D ∼ D
′
, if D− D

′ ∈ Im(div).

iv) Let D ∈ CaDiv(X), D is said to be effective if and only if D ∈ Im
(

H0(X,OX ∩ K×X ) −→
H0(X,K×X /O×X

)
. We then write D ≥ 0, and the set of effective Cartier divisors is denoted by

CaDiv+(X).

v) The group of Cartier divisors mod principal divisors is denoted CalCl(X) := CaDiv(X)/ ∼.
Also Cacl(X) is called Cartier divisor class group.

Remarks 2.9.2 i) For a sheaf of rings F on X, we can construct the sheaf F× of invertible elements,
which is a sheaf of abelian groups, by defining

F×(U) := {s ∈ F (U) | st = 1U for some t ∈ F (U)}

Note that if st = 1U in F (U) and W ⊆ U, then s|Wt|W = 1W .
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ii) Definition 2.9.2 allows us to represent a Cartier divisors by a system {(Ui, fi)} where {Ui} is an

open cover of X and fi ∈ H0(Ui,K×X ) such that fi f−1
j|Uij
O×X (Uij), where Uij = Ui ∩Uj = Uji. In

other words, there are units hij ∈ OX(Uij) such that fi = hij f j over Uij.

Definition 2.9.3 The pairs (Ui, fi) are called the local defining data or the local equations for the divisor
D (with respect to the covering Ui).

Not that the local defining data are not unique : Suppose now we have two systems {(Ui, fi)} and
{(Wj, f j)} which represent a same Cartier divisor D. Then on Ui ∩Wj, fi = hijgj for some hij ∈
O×X (Ui ∩Wj). Therefore, for convenience, we denote D = [{(Ui, fi)}].
Now, the set of Cartier divisors naturally form an abelian group with the group law defined by : If

D = [{(Ui, fi)}] and D
′
= [{(Vj, gj)}] ∈ CaDiv(X), then

D + D
′

:= [{(Ui ∩Vj, figj)}].

The inverse −D is [{(Ui, f−1
i )}].

Additionally, let D = [{(Ui, fi)}] ∈ CaDiv(X). Then D ∈ CaDiv+(X) if and only if fi ∈ OX(Ui)
for all i. Moreover, D is principal if [{(Ui, fi)}] = [{(X, f )}] for some convenient f .

Example 2.9.2 On P1 we can take the standard covering U0 = Spec(k[s]) and U1 = Spec(k[s−1]).
Then there is a Cartier divisor D given by (U0, s) and (U1, 1).

Correspondence Between Sheaves and Cartier Divisors

We would like to reinterpret Cartier divisors in the language of sheaves.

For any D ∈ CaDiv(X), we would like to associate a sheaf to D. Namely, let D = [{(Ui, fi)}] ∈
OX(D), the associated sheaf on X is defined by

OX(D)|Ui
:= f−1

i OX|Ui
= f−1

i OUi

i.e., the sheaves f−1
i OUi

glue to a sheafOX(D) defined on all of X. It is by construction invertible, since
it is invertible on each Ui.
This construction is independent of the choice of the representatives. Indeed, Two different representatives
(Ui, fi) and (Wj, gj) for the same divisor D give rise to the same invertible sheaf. This is because over

Ui ∩Wj, we have fi = hijgj for some sections hij ∈ O×X (Ui ∩Wj). This means that f−1
i OUi∩Wj

=

g−1
i OUi∩Wj

, and so the sheaf is uniquely determined as a subsheaf of KX.

Theorem 2.9.1 The map D 7−→ η(D) = OX(D) gives a one-to-one correspondence between Cartier
divisors on X and invertible subsheaves on KX.

Proof. See [12, Proposition 6.13, p.144].

2.9.2 Weil Divisors

In this subsection, we will introduce Weil divisors. We consider the schemes satisfying the following
condition : (∗) X is a Noetherian integral separated scheme which is regular in codimension one (We say
a scheme X is regular in codimension one (or sometimes nonsingular in codimension one) if every local
ring OX,x of X of dimension one is regular.)
Recall that this means that each local ring OX,x is an integral domain, which is integrally closed in
its function field K = k(X). Recall that if Z is an irreducible closed subset of a scheme X, then the
codimension of Z in X is equal to the dimension of the local ring OX,ϵ, where ϵ ∈ Z is the generic point
(see proposition 2.5.15).
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Definition 2.9.4 Let X satisfy (∗)

i) A prime divisor on X is a closed integral subscheme Z of codimension one.

We denote by X(1) the set of closed integral subschemes of codimension 1, or equivalently, their
generic points.

ii) A Weil divisor on X is a finite formal sum

D = ∑
i

niYi (2.8)

where ni ∈ Z and Yi are prime divisors. Then the set of Weil divisors Div(X) is the free abelian

group on X(1).

iii) We say D is effective if all the ni are non-negative in (2.8).

iv) The support of a Weil divisor D, denoted Supp(D), is the subset ∪ni ̸=0Yi.

Remark 2.9.2 If Z is a prime divisor on X and V ⊆ X is an open set, then Z ∩V is naturally a prime
divisor on V. It follows that we obtain a presheaf V 7−→ Div(V).

Our next task is to define the Weil divisor associated to a rational function.

The assumption (∗) "regular in codimension one" implies that Z ⊆ X is a prime divisor with generic
point ϵ ∈ X, the local ringOX,ϵ is a discrete valuation ring, with a corresponding valuation V : K× −→
Z. The concept of a valuation is a generalization of the "order" of a zero or a pole of a meromorphic func-
tion in complex analysis.
In same logical, an element f ∈ K× has positive valuation m if it vanishes to order m along Z, and
negative valuation −m if it has a pole of order m there.
To define this properly, let Z ⊆ X be a prime divisor, and let ϵ ∈ X be its generic point. Then we define
for a nonzero element f ∈ OX,ϵ,

VZ( f ) = d (2.9)

where d is the unique non-negative integer so that f ∈ md \md+1

In the function field K = k(X), an element f is represented by a fraction h/g and we define VZ( f ) =
VZ(h)− VZ(g). With this definition, we have OX,ϵ = V−1

Z (Z≥0), O×X,ϵ = V−1
Z (0) and the maximal

ideal is given by m = V−1
Z (Z≥1).

Definition 2.9.5 Let f ∈ K×, we define its corresponding Weil divisor as

div( f ) = ∑
Z

VZ( f )Z.

Divisors of the form div( f ) are called principal divisors, and they generate a subgroup Div0(X) ⊆
Div(X).

In the definition 2.9.5 the sum is taken over all prime divisors on X. To see that this is well defined, see
the following lemma.

Lemma 2.9.1 Let X be an integral noetherian scheme which is regular in codimension one, with fraction
field K and let f ∈ K. Then VZ( f ) = 0 for all but finitely many prime divisors Z.

Proof. See [9, Lemma 15.3, p.275].
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Lemma 2.9.2 Let f , g ∈ K×. Then

div( f g) = div( f ) + div(g)

as Weil divisors on X.

Proof. See [30, Section 31.26.6, Weil divisors].

Example 2.9.3 Let X = Spec(k[x]) = A1
k and K = k(x). Here prime divisors in X correspond to

closed points Z = [b] ∈ A1
k associated to maximal ideals (x− b). Let f = x3(x−1)

x+1 ∈ K. Then VZ( f ) =
0 for all b except when b = 0,+1,−1,where we have V[0]( f ) = 2, V[1]( f ) = 1 and V[−1]( f ) = −1.

Hence the divisor of f is 2[0] + [1]− [−1].

The sheaf associated to a Weil divisor

As in the subsection 2.9.1, we have been successful to associate any Cartier divisors with a sheaf. The
same way we would like to form a sheaf, denoted OX(D) where D = ∑ nZZ is Weil divisors, which
should consist of rational functions with poles at worst along D.

If f = h
g is such a rational function where h, g are coprime, we have div( f ) = div(h)− div(g).

So if D is a prime divisor, we want the pole div(g) to be ’cancelled out’ by D, i.e., D− div(g) is effective.
In other words, we want div( f ) + D to be an effective Weil divisor. Thus, concretely, we define the sheaf
OX(D) as follows :

OX(D)(U) = { f ∈ K | (div( f ) + D)|U ≥ 0} ∪ {0}
= { f ∈ K | VZ( f ) ≥ −nZ, for all nZ ∈ Z} ∪ {0}

Here Z ranges over all prime divisors in X and ϵZ denotes thegeneric point of Z. Moreover, The sheaf
OX(D) is a quasi-coherent sheaf on X and it is invertible if and only if D is a Cartier divisor.

Connection between Weil Divisors and Cartier Divisors

For each open subset U ⊆ X the following exact sequence :

0 O×X (U) K× Div(U)div

This gives an exact sequence of sheaves

0 O×X K×X Div
div

(2.10)

and we obtain the following injective map of sheaves

Ψ : K×X /O×X −→ Div.

If we take global sections, we get an injective map

β : CaDiv(X) −→ Div(X).

Let D be a Cartier divisor given by the data (Ui, gi). If Z is a prime divisor on X, with generic point ϵ,
then since Ui is a cover, ϵ ∈ Ui for some i. We can then define

VZ(D) = VZ(gi)

This is independent of the choice of Ui. Indeed, If ϵ ∈ Ui ∩Uj, then gig
−1
j ∈ O×X (Ui ∩Uj), and so

VZ(gig
−1
j ) = 0, hence VZ(gi) = VZ(gj). Then β is defined by

β(D) = ∑
Z

VZ(D)Z
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Remark 2.9.3 So by explicit description above, we may view Cartier divisors as a subgroup of the group
of Weil divisors.

Theorem 2.9.2 Let X be an integral normal scheme. Then the following statement are equivalent :

i) β : CaDiv(X) −→ Div(X) is an isomorphism.

ii) The exact sequence

0 O×X K×X Div
div

is exact on the right.

iii) X is locally factorial (all the local rings OX,x are UFDs).

Proof. See [9, Proposition 15.27, p.287].

Corollary 2.9.1 Let k be an algebraically closed field. Then Pic(An
k ) = Cl(An

k ) = CaCl(An
k ) = 0.

Proof. See [9, Theorem 20.43. p.311].
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Chapter 3

Introduction to Central Simple Algebra,
Severi-Brauer Varieties

The aim of this chapter is to present some basic properties of central simple algebras and to introduce
Severi-Brauer varieties with a special focus on relationships between these varieties and splitting field
of central simple algebras. We give at first a brief introduction to simple and semisimple modules, then
we prove fundamental theorems on central simple algebras. In particular, this includes Wedderburn’s
theorem, the double centralizer theorem and Skolem-Noether theorem. We show how to construct Brauer
group of a field and show how crossed products relate this group to a second Galois cohomology group. We
define then Severi-Brauer varieties and present some of their properties. In particular, we are interested
here in canonical connections between these varieties, central simple algebras and some cohomological
interpretations.

3.1 Simple and semisimple modules

Let R be a commutative ring. An associative algebra over R, is a pair (A, ψ) consisting of an associative
ring A and a ring homomorphism

ψ : R −→ Z(A)

called the structure map of A over R, where

Z(A) = {a ∈ A | xa = ax for all x ∈ A}

is called the center of A, which is a subring of A.
An algebra homomorphism ϕ : A −→ B between two R-algebras is a ring homomorphism such that the
diagram

A B

R

ϕ

ψ1 ψ2

commutes. This defines the category AlgR of R-algebras.

3.1.1 Simple Modules

Recall that a ring R is simple if it has no two-sided ideals but 0 and R.

Definition 3.1.1 Let A be an algebra, M be a left (resp., right) A-module. We say that M is simple (or
irreducible) if M ̸= 0 and it has no proper nonzero submodules.

Convention. In what follows, the word module will mean a left module.

Examples 3.1.1 1) Any field k is simple as k-module.
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2) Take A = Z and M = Z/5Z. Then M is a simple A-module.

3) Let J be maximal left ideal of A. Then A/J is a simple A-module. Indeed, let P be a submodule
of A/J, and set P̃ := {a ∈ A | a + J ∈ P}, then P̃ is a left ideal of A containing J and we have
P̃/J = P. Since J is a maximal ideal of A, then P̃ = J or P̃ = A. So P = 0 or P = A/J.
Conversely, let I be a left ideal of A such that A/J is a simple A-module, then J is a maximal left
ideal. Indeed, Let L be a left ideal of A such that I ⊆ L, then L/I is a submodule of A/I. Since
A/I is a simple, then we have L/I = {0} or L/I = A/I. Hence L = I or L = A.

In what follows, A will denote an algebra (over some commutative ring).

Proposition 3.1.1 Let M be a nonzero A-module, then the followings statements are equivalent :

1) M is simple.

2) For all m ∈ M \ {0}, Am = M.

3) M = A/J for some maximal left ideal J of A.

Proof. 1)⇒ 2) Since Am is a nonzero submodule of M and M is simple, so Am = M.
2)⇒ 1) Let P be a nonzero submodule of M and let m be a nonzero element of P, then we have M =
Am ⊆ P, which shows that P = M. This proves that M is a simple A-module.
3)⇒ 1) This is a direct consequence of examples 3.1.1 3).

Lemma 3.1.1 (Schur’s lemma) Let M and N be simple A-modules. If ϕ : M −→ N is a homomorphism
of modules, then either ϕ = 0 or ϕ is an ismorphism.

Proof. Suppose that ϕ ̸= 0, then ker(ϕ) ̸= M. It follows that ker(ϕ) = 0. Also, im(ϕ) ̸= 0, so
im(ϕ) = N. Thus, ϕ is an isomorphism.

Corollary 3.1.1 Let M, N be simple modules. Then M ≃ N (as A-modules) or HomA(M, N) = 0.

Proof. Let ϕ ∈ HomA(M, N). If ϕ ̸= 0, then by lemma 3.1.1 ϕ is an isomorphism. Hence M and N
are isomorphic.

Definition 3.1.2 A division algebra is an algebra in which every nonzero element has a multiplicative
inverse, but multiplication is not necessarily commutative. A ring (which is obviously a Z-algebra) that
is a division (Z-)algebra is also called a division ring or a skew field.

Corollary 3.1.2 Let M be a simple A-module and D := EndA(M), i.e., the algebra of endomorphisms
of M (endowed with its canonical laws). Then D is a division algebra.

Proof. Let d ∈ D \ {0}, then by lemma 3.1.1 d is an ismorphism. So d is invertible in D.

3.1.2 Semisimple modules

Definition 3.1.3 A left (resp. right ) A-module M is semisimple if there exist simple A-modules Mi

(i ∈ I) such that

M ≃ ⊕
i∈I Mi

(isomorphism of A-modules).

Example 3.1.1 A simple module is semisimple.
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Definition 3.1.4 Let M be an A-module. We say that M is indecomposable if writing M = P
⊕

Q for
some submodules P, Q of M, then necessarily P = 0 or Q = 0.

Proposition 3.1.2 Let M be a semisimple A-module. Then followings statements are equivalent :

1) M is a simple A-module.

2) EndA(M) is a division algebra.

3) M is indecomposable.

Proof. 1)⇒2) This follows from corollary 3.1.2.
2⇒3) Let P and Q be two submodules of M. If we suppose that M = P⊕ Q with P ̸= 0 and Q ̸= 0.
Consider the followings homomorphism of A-modules :

α := (idM, 0) : M = P
⊕

Q −→ M
p + q 7−→ p

By the hypothesis here α must be an isomorphism, which is not the case. Therefore M is indecomposable.
3)⇒1) Immediate.

Proposition 3.1.3 Let M be a nonzero A-module and let Q be proper submodule of M. Assume that
M = ∑i∈I Mi, where each Mi are a simple submodules. Then there exists J ⊆ I such that M =
(
⊕

j∈J Mj)
⊕

Q

Proof. Since Q ̸= M, then there exists i ∈ I such that Mi ̸⊆ Q. In this case, we have Mi ∩ Q = {0},
because if x ̸= 0(∈ Mi ∩Q) we obtain Mi = Ax ⊆ Q (see proposition 3.1.1). So Mi + Q = Mi

⊕
Q.

Consider J be a maximal for the property P1 := ∑j∈J Mj + Q = ∑j∈J Mj
⊕

Q. Now, let i ∈ I \ J if we
may assume that P1 + Mi = P1

⊕
Mi = ∑k∈J∪{i} Mk

⊕
Q. But that contradicts the maximality of J.

Thus Mi ∩ P1 ̸= 0. Let z ∈ Mi ∩ P1, we have Mi = Az ⊆ P1. So for all i ∈ I Mi ⊆ P1, then M ⊆ P1,
so M = P1. Hence M = ∑j∈J Mj

⊕
Q.

Remark 3.1.1 In proposition 3.1.3, if we take Q = 0 we obtain M =
⊕

j∈J Mj. Then M is semisimple.

Definition 3.1.5 Let M be an A-module ( ̸= 0). Let P and Q be submodules of M.

i) Q is called a complement of P if P
⊕

Q = M.

ii) If any submodule of M has a complement in M. We say that M supplemented.

Lemma 3.1.2 Let M be an A-module. Then the followings are equivalent :

i) M is a supplemented.

ii) Any submodule of M is supplemented.

Proof. i)⇒ ii) Let N be a submodule of M, and let P be a submodule of P. Then P is also be a submodule
of M, since M is supplemented, then there exists Q be a submodule of M such that M = P

⊕
Q, so we

have N = N ∩M = (P
⊕

Q) ∩ N = P
⊕
(Q ∩ N). Hence P has a complement in N.

ii)⇒ i) Immediate.

Proposition 3.1.4 Let M be a nonzero A-module. Then the followings are equivalent :

1) M is semisimple.

2) M is the sum of its simple submodules.
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3) M is supplemented.

Proof. 1)⇒2) Immediate.
2)⇒3) proposition 3.1.3.
2)⇒1 remark 3.1.1.
3)⇒1) Let S be a maximal (proper) submodule of M. Since M is supplemented, then there exists a
submodule Q ̸= 0 such that S

⊕
Q = M. Also, since S is maximal in M then necessarily Q is a simple

submodule of M. This prove that M has a simple submodule. Let N be sum of all simple submodules of M

and let N
′
be a submodule of M such that M = N

⊕
N
′
. Assume that N

′ ̸= 0, then N
′
is supplemented

(see lemma 3.1.2). So for the same reason as in above, N
′

has a simple submodule P. Plainly, P is also
a simple submodule of M, but this contradicts the fact that N is the sum of all simple submodules of M.
This shows that M is the sum of its simple submodules.

Corollary 3.1.3 Let M be a semisimple A-module and let P be a nonzero submodule of M, then

i) P is semisimple.

ii) M/P is semisimple.

Proof. i) Since M is supplemented, then by lemma 3.1.2 P is also supplemented. So by proposition
3.1.4 P is semisimple.

ii) Since M is supplemented, then there exists a submodule Q of M such that P
⊕

Q = M. So
M/P ≃ Q. Hence by i) M/P is semisimple.

Corollary 3.1.4 The direct sum of a family of the semisimple A-modules is a semisimple A-module.

Proof. This corollary is a direct consequence of the definition 3.1.3.

Proposition 3.1.5 Let M =
⊕

i∈I Mi where Mi are simple A-modules. Suppose that N is a simple
A-module and suppose that there exists a nonzero homomorphism of A-modules ψ : N −→ M. Then
there exists j0 ∈ I such that M = ψ(N)

⊕
(
⊕

i ̸=jo Mi), and N ≃ Mj0 (isomorphism of A-modules).

Proof. By proposition 3.1.3, there exists a subset J of I such that M = ψ(N)
⊕
(
⊕

i∈J Mi). Since N is
simple, then so is ψ(N); moreover we have the following canonical isomorphisms of A-modules :

ψ(N) ≃ M/
⊕

j∈J

Mj ≃
⊕

j∈I\J

Mj.

so necessarily |I \ J| = 1. So there exists j0 ∈ I such that J = I \ {j0}. The rest of the proof is obvious.

Notation. Let M be an A-module. We denoted by S(M) the set for all submodules of M.

Definition 3.1.6 Let M be an A-module. The radical of M is rad(M) :=
⋂{N ∈ S(M) |M/N is simple}.

Remark 3.1.2 rad(M) is a submodule of M.

Proposition 3.1.6 Let M be an A-module and N be a submodule of M. Then the following statements
hold :

1) If rad(M/N) = 0, then rad(M) ⊂ N.

2) rad(M/rad(M)) = 0.

Proof. See [21].
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Lemma 3.1.3 Let M be a semisimple an A-module. The followings are equivalent :

i) M is finitely generated.

ii) M is Noetherian.

iii) M is Artinian.

Proof. See [21, Proposition, p.36].

Theorem 3.1.1 Let M be an A-module. The following statements hold : (what you wrote here and the
implications you have in the proof have no sense) are equivalent :

i) M is semisimple and finitely generated.

ii) rad(M) = 0 and M is Artinian.

Proof. i)⇒ ii) Suppose that M is semisimple and finitely generated, so by lemma 3.1.3 M is Artinian.
Write M =

⊕
j∈I Mj with Mi simple. For i ∈ I, put Pi =

⊕
j ̸=i Mj, then

M/Pi ≃ Mi(is simple)

So rad(M) ⊆ ⋂
J∈I Pj = 0.

ii) ⇒ i) Assume that rad(M) = 0 and M is Artinian and consider the family of all finite intersections
Mi1 ∩ · · · ∩Mik , where Mi is a submodule of M such that M/Mi is simple. Since M is Artinian, then
this family has a minimal element that we may take to be by M1 ∩ · · · ∩Mr for some positive integer r.
Necessarily, M1 ∩ · · · ∩Mr = 0. Indeed, for any submodule N of M such that M/N is simple, we have

(
M1 ∩ · · · ∩Mr

)
∩ N = M1 ∩ · · · ∩Mr

because M1 ∩ · · · ∩Mr is minimal. So M1 ∩ · · · ∩Mr ⊆ N, which yields that rad(M) = M1 ∩ · · · ∩
Mr. Now, consider the canonical map :

ψ : M −→ ⊕r
i=1 M/Mi

m 7−→ (m + Mi)1≤i≤r

Since M/Mi are simple, then
⊕r

i=1 M/Mi is semisimple. Hence ψ(M) is semisimple ( because ψ(M)
is submodule of

⊕r
i=1 M/Mi). We have ker(ψ) = M1 ∩ · · · ∩ Mr, M ≃ ψ(M). Therefore, M is

semisimple. Moreover, by lemma 3.1.3, M is also Noetherian, so M is a finitely generated.

3.2 Semisimple and simple algebras

Throughout this section, F is a field. Recall that all algebras are associative and have an identity, denoted
1 (sometimes denoted 1A). Most results will be written in terms of left modules (which we hence often
will simply call modules). If we need to work with right modules then this will be specifically stated. The
endomorphism ring of an A-module M is denoted EndA(M). Similarly, we will use HomA(M, N) to
denote the set of module homomorphism from M to N.
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3.2.1 Semisimple algebras

Definition 3.2.1 Let A be an algebra. We say that A is semisimple if A is semisimple when it is
considered (in the natural way) as a left A-module.

Remark 3.2.1 Note that if A is semisimple i.e., A =
⊕

i∈I Ai, where each Ai is a simple left A-module
(or equivalently, where each Ai is a left ideal of A).

Definition 3.2.2 Let A be an algebra, we say that A is left Artinian (resp. Noetherian ) if A is an
Artinian left A-module (resp., a Noetherian left A-module).

Proposition 3.2.1 An algebra A is semisimple if and only if it is left Artinian and rad(A) = 0.

Proof. This follows from theorem 3.1.1 and remark 3.2.1.

Proposition 3.2.2 Let A be a semisimple algebra. Then every A-module is semisimple and every image
of A by a homomorphism of algebras is a semisimple algebra. Moreover, every simple A-module is
isomorphic to a minimal left ideal of A.

Proof. Since A is a semisimple A-module, then the direct sum of β copies of A is also a semisimple
A-module, for all the cardinal β. Therefore, every free left A-module is semisimple. Clearly, for any left
A-module M, there exists a free A-module N and submodule P of N such that

M ≃ N/P

As seen above, N is semisimple, so by corollary 3.1.3 N/P is also a semisimple A-module. Write the
argument here which show that simple A-modules are isomorphic to minimal left ideal of A, after showing
that the image of a semisimple algebra by a homomorphism of algebras is a semisimple algebra (see below),
then by proposition 3.1.1, there exists a maximal left ideal J of A such that M ≃ A/J (as A-module).
Since A is semisimple (as A-module), then A is supplemented (see proposition 3.1.4). Therefore, there
exists a left ideal I of A such that I

⊕
J = A, so we have

A/J ≃ I (as A-module)

Also since J is a maximal left ideal of A, then necessarily, I is a minimal left ideal of A, so

M ≃ A/J ≃ I

and I is a minimal left ideal of A.
Assume that A is R-algebra where R is a commutative ring. Let B be a R-algebra and assume that there
exists a homomorphism of R-algebras

ψ : A −→ B

Let’s show that C := ψ(A) is a semisimple algebra. Without losing the generality we can assume that ψ
is surjective i.e B = C. Note that ψ induces an action of A on B given by

a · x := ψ(a)x for all a ∈ A and x ∈ B

Therefore B is a (left) A-module (left). and so by the above, B is a semisimple A-module. We can
write B =

⊕
i∈I Bi with Bi simple A-submodule of B. Since ψ is surjective, then each also a simple

B-submodule of B, so B is a semisimple algebra.
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3.2.2 Simple algebras

Definition 3.2.3 Let A be an algebra. We say that A is simple algebra if A ̸= 0, i.e., A ̸= 0*and the
only two-sided ideals of A are {0} and A.

Examples 3.2.1 1) Let D be a division algebra (see definition 3.1.2). Then clearly D is a simple
algebra.

2) For any field F and any positive integer n, the algebra A := Mn(F) is simple. Indeed, let
(eij)1≤i,j≤n be the canonical base of A, i.e., eij is the matrix of A for which all entries are 0 ex-
cept the ij-entry which equals 1. Let I be a two-sided ideal of A and suppose that I contains some
nonzero element a = (aij)1≤i,j≤n. Let 1 ≤ r, s ≤ n be such that ars ̸= 0, then for any 1 ≤ i ≤ n,

we have a−1
rs eiraesi = eii. It follows that I contains the unit element of A and so I = A.

3) Another important example of a finite dimensional noncommutative algebra over a field that was
discovered by William Rowan Hamilton† on 16 October 1843, is the algebra of quaternions (over
the field R of real numbers), a 4-dimensional algebra with basis 1, i, j, k over R, the multiplication
being determined by the rules

i2 = −1, j2 = −1, ij = −ji = k.

This algebra algebra which is often called the Hamilton algebra, is usually denoted by H =
(−1,−1)R. One can see that H is a division algebra. Indeed, for any nonzero element x =
α + βi + γj + ηk of H, where α, β and γ are real numbers, denoting x := α− βi− γj− ηk and
N(x) := xx (i.e., N(x) = α2 + β2 + γ2 + η2, called the norm of x), one can easily check that

x
N(x)

is the inverse for x in H.

4) Let F be a field of characteristic not 2. For any two elements a, b ∈ F∗, in a similar way as
for the quaternion algebra H, the (generalized) quaternion algebra (a, b)F is defined to be the 4-
dimensional F-algebra with basis 1, i, j, k and with multiplication being determined by

i2 = a, j2 = b, ij = −ji = k.

The set {1, i, j, k} is called a quaternion basis of (a, b)F. The algebra (a, b)F is a simple algebra
with Z

(
(a, b)F

)
= F. Indeed, let’s define on (a, b)F a new operation, the Lie bracket, by [x, y] =

xy− yx for x, y ∈ (a, b)F. It is clear that F ⊆ Z
(
(a, b)F

)
. Let x = α + βi + γj + ηk ∈ (a, b)F,

where α, β, γ, η ∈ F. If x ∈ Z
(
(a, b)F

)
, then in particular, [i, x] = [j, x] = [k, x] = 0. We have :

∗ [i, x] = 2aη j + 2γk.

∗ [j, x] = −2bη − 2βk.

∗ [k, x] = 2bγi− 2aβj.

So, if x ∈ Z
(
(a, b)F

)
, then β = γ = η = 0, hence x = α ∈ F. Thus, Z((a, b)F) = F.

Let’s now consider a nonzero two-sided ideal J of (a, b)F, and let x be a nonzero element of J. Since J
is an ideal of A, then [i, x] = ix− xi ∈ J, also [j, x], [k, x] ∈ J. So [j, [i, x]], [k, [j, x]], [i, [k, x]] ∈ J.
One can easily see that we have :

∗ [j, [i, x]] = −4bγi.

*For some authors an algebra is always assumed to be different from {0}.
†William Rowan Hamilton (4 August 1805-2 September 1865) was an Irish mathematician, Andrews Professor of As-

tronomy at Trinity College Dublin, and Royal Astronomer of Ireland at Dunsink Observatory. He made major contributions
to optics, classical mechanics and abstract algebra. His work was of importance to theoretical physics, particularly his refor-
mulation of Newtonian mechanics, now called Hamiltonian mechanics. It is now central both to electromagnetism and to
quantum mechanics. In pure mathematics, he is best known as the inventor of quaternions.
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∗ [k, [j, x]] = 4abη j.

∗ [i, [k, x]] = −4aβk.

So, J contains necessarily an invertible element of (a, b)F, which yields. So J = (a, b)F. Therefore,
(a, b)F is simple.

Let A be an algebra and M be an A-module. We denote annA(M) := {a ∈ A | ax = 0 for all x ∈ M}
that we call the annulator of M. We say that M is a faithful A-module if annA(M) = 0. In other
words, considering the (canonical) associated representation ψ : A −→ EndA(M), defined by a 7−→ la,
where la : M −→ M, is given by la(x) = ax, for all x ∈ M, M is a faithful A-module if and only
if ψ is injective. To each module M over A, one can associate a faithful module over some algebra B by
proceeding in this way : The ring homomorphism ψ : A −→ EndA(M) induces naturally an injective
ring homomorphism ψ̃ : A/ ker(ψ) −→ EndA(M) where ker(ψ) is none but ann(M). This gives rise
to a faithful structure on M as an A/ann(M)-module.

Lemma 3.2.1 Let R be a ring and let e be a nonzero idempotent of R. Then we have a ring isomorphism

eRe ≃ EndR(eR).

where eR is considered as a right R-module.

Proof. Let r ∈ R, we define the following map

ψr : R −→ R
x 7−→ rx

It’s clear that ψr is a group homomorphism, and also for all x, y ∈ R, we have ψr(xy) = (rx)y) =
ψr(x)y. Therefore ψr ∈ EndR(R). Moreover, if r ∈ eRe, then clearly ψr restricts to an endomorphism
of eR. So we get a map

Φ : eRe −→ EndR(eR)
r 7−→ ψr

One can easily see that Φ is a ring isomorphism.

Lemma 3.2.2 Let R be a ring and let M be a right R-module. For all r ≥ 1, we have a ring isomorphism

EndR(Mr) ≃ Mr(EndR(M)).

Proof. See [4, Lemma III.2.6, p.8].

Wedderburn‡’s theorem

Our aim here is to prove (a restricted version of) Wedderburn’s theorem, a fundamental theorem in cen-
tral simple algebra theory showing that a finite-dimensional central simple algebra over a field is a matrix
algebra over this field. We assume throughout the rest, except other mention or other appearance from
the context, that all algebras are finite-dimensional nonzero algebras over some fixed field (often denoted
by F). We continue to assume that an algebra is always associative with a unit element and a homomor-
phism of algebras from an algebra A into an algebra B always map to the unit element of A on that of B.

Let A be a (finite-dimensional) F-algebra, then clearly A has a minimal left (resp. right) ideal Let A be
a F-algebra and M be finitely generated free left (resp., right) nonzero A-module, then M ≃ Ar for a
(uniquely determined) positive integer r. The integer r is called the rank of M and will be denoted by
rankA(M).

‡Joseph Henry Maclagan Wedderburn (2 February 1882, Forfar, Angus, Scotland-9 October 1948, Princeton, New Jersey)
was a Scottish mathematician, who taught at Princeton University for most of his career. A significant algebraist, he proved
that a finite division algebra is a field, and part of the Artin–Wedderburn theorem on simple algebras. He also worked on
group theory and matrix algebra.
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Lemma 3.2.3 Let A be a simple F-algebra and let J be a minimal right ideal. Then :

1) Every finitely generated right A-module M is isomorphic to Jn for some positive integer n.

2) All finitely generated simple right A-module is isomorphic to J.

3) A non zero finitely generated right A-module M is free (as a right A-module) if and only if
dimF(A)|dimF(M). Moreover, we have

rankF(M) =
dimF(M)

dimF(A)
.

4) Two nonzero finitely generated right A-modules are isomorphic if and only if they have the same
dimension over F.

Proof. 1) Let M be a nonzero finitely generated A-module. The left ideal generated by the elements
of J is a nonzero two-sided ideal of A, hence equals A. In particular one many write

1 =
m

∑
i=1

biαi, bi ∈ A, αi ∈ J.

Thus for all x ∈ A, we have

x = (
m

∑
i=1

biαi)x =
m

∑
i=1

bi(αix).

Since J is a right ideal, we have αix ∈ J for all 1 ≤ i ≤ m, and therfore we have

A =
m

∑
i=1

bi · J

Since M is finitely generated right A-module there exists m1, · · · , mr ∈ M such that

M =
r

∑
i=1

mi A

Therefore,

M =
r

∑
i=1

mi

m

∑
j=1

bi · I = ∑
i,j

mi · (bj · J) = ∑
i,j

(mi · bj) · J.

Hence we may then write M = ∑
s
i=1 mi · J with s minimal for this properties. Now we want to

prove that
M = ⊕s

i=1mi · J
Assume that ∑

s
i=1 miγi = 0 for some γi ∈ J. If one of the γi’s is nonzero say γs, then γs A is a

nonzero right ideal of A contained in J and hence J = γs A (for J is a minimal right A-ideal of A).
We obtain :

ms · J = (ms · γs)A = −
s−1

∑
i=1

mi · J.

This yields

M =
s−1

∑
i=1

mi · J

Contradicting the minimality of s. So γi = 0 for all i. It follows that the A− linear map

Φ : Js −→ M
(γ1, · · · , γs) 7−→ ∑

s
i=1 miγi

is an isomorphism of right A-modules.
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2) Let M be a finitely generated simple right A−module. In particular, M is nonzero and by i) there
exists an integer s ≥ 1 such that M ≃ Js(as A-module). Since M is simple we have necessarily
s = 1. Otherwise Js, and thus M, would have a nontrivial submodule. Hence M ≃ J.

3) Let M be a nonzero finitely generated A-module. If M is free, then M ≃ Ar (as A-modules) where
r = rankA(M). Since M and Ar are isomorphic as F-vector spaces, we have

dimF(M) = rankA(M) · dimF(A).

In particular,
dimF(A)|dimF(M)

and

rankA(M) =
dimF(M)

dimF(A)

Conversely, suppose that dimF(A)|dimF(M). Since M and A are both nonzero finitely generated
A-modules, then by 1) we have M ≃ Jr1 , and A ≃ Jr2 (as A-modules) for some integers r1, r2 ≥ 1.
The assumption implies that r2|r1 by comparing dimensions over F, write r1 = nr2, then we get
M ≃ Jr2n ≃ (Jr2)n ≃ Ar1 . Hence M is a free (right) A-module.

4) Let M and N be two nonzero finitely generated right A-modules. Then by 1) M ≃ Jr1 and N ≃ Ir2

for some integers r1, r2 ≥ 1. In particular, if M and N have the same dimension as F-vector spaces,
then r1dimF(J) = r2dimF(J) and therfore r1 = r2. So in this case

M ≃ Jr1 ≃ N.

Conversely, if M ≃ N (as A-modules), then plainly they are isomorphic as F-vector spaces. Thus
M and N have the same dimension over F.

Note that this lemma is also true if we consider left A-modules rather than right A-modules.

Proposition 3.2.3 Let D be a division F-algebra. Then every nonzero finitely generated right D-module
is isomorphic to Dr for some r ≥ 1.

Proof. Since D is a division algebra, then D itself is a minimal right ideal. So by lemma 3.2.3, any
nonzero finitely generated D-module M is isomorphic to Dr for some positive integer r.

As an application, we can prove the following result :

Proposition 3.2.4 Let m, n be two positive integers and D1, D2 be two division F-algebras, then

Mn(D1) ≃ Mm(D2) if and only if D1 ≃ D2 and n = m.

Proof. Let A1 = Mm(D1), A2 = Mn(D2) and e = e11, where (eij)1≤i,j≤m is the canonical basis of A1,

i.e., eij is the matrix of Mm(D1) with all entries equal to 0 but the ij-entry equal to 1. We have e2 = e,
eA1e = D1e = eD1 and that the map

Φ : D1 −→ eA1e
d 7−→ de

is a ring isomorphism, thus D1
∼= eA1e. Also, we have the following ring isomorphism :

eA1e ≃ EndA1
(eA1)

see lemma 3.2.1. Let I1 = eA1 which is easily seen to be the set of matrices whose only possibly nonzero
row is the first one. This is a minimal right ideal of A1 and by the above, we have D1

∼= EndA1
(I1).



123

Similarly, D2 ≃ EndA2
(I2), where I2 is a similar right ideal of A2. Now, if ψ : A1 −→ A2 is an

isomorphism of F-algebras, then ψ(I1) is a minimal right ideal of A2. Since all the minimal right ideals
of A2 are isomorphic by lemma 3.2.3, we have I2 ≃ ψ(I1). Therefore, we have a ring isomorphism

D1 ≃ EndA1
(I1) ≃ EndA2

(I2) ≃ D2.

All these isomorphisms are F-linear, so D1 and D2 are isomorphic as F-algebras. It follows easily that
m = n.

Theorem 3.2.1 (Wedderburn’s theorem) Let A be a simple F-algebra. Then A is isomorphic to Mn(D)
for some integer m and some division F-algebra D with Z(D) = Z(A).

Proof. Let J be a minimal left ideal of A. Since J is a simple left A-module, then by corollary 3.1.2
D := EndA(J) is a division algebra. Moreover, since A is a left A-module, then by lemma 3.2.3 there
exists an integer r ≥ 1 such that A ≃ Jr (as A-module). So taking e = 1 in lemmas 3.2.1, 3.2.2 we
obtain

A ≃ EndA(A) ≃ EndA(Jr) ≃ Mr(EndA(J)) ≃ Mr(D).

The uniqueness of the positive integer r and the division algebra D (up to an algebra isomorphism) comes
directly from proposition 3.2.4 and the formula

dimF(A) = r2dimF(D).

For the second statement, one can easily see that we have the following canonical algebra isomorphisms :

Z(D) ≃F Z(Mr(D)) ≃F Z(A).

The division algebra D, which is unique up to an algebra isomorphism, is called the underlying division
algebra of A (or the division algebra Brauer-equivalent to A).

Central simple algebras

Definition 3.2.4 (Central simple algebra) An F-algebra A is called a central simple algebra over F if A
is simple and Z(A) = F.

Notation. The class of all central simple algebras over F we will denoted by CSA/F.

Examples 3.2.2 1) Mn(F) is central simple algebra over F.

2) Any division F-algebra D is simple and if also D satisfying Z(D) = F is a central simple algebra
over F.

3) By examples 3.2.1, for any field F of characteristic different from 2 and any elements a, b ∈ F∗, the
quaternion algebra (a, b)F is simple algebra and Z((a, b)F) = F. Then (a, b)F is a central simple
algebra over F.

4) Any field F is a central simple algebra over itself.

Corollary 3.2.1 Let A be a simple F-algebra. Then there exists a field extension E/F of finite degree
such that A is a central simple E-algebra.

Proof. By theorem 3.2.1, A ≃ Mn(D) for some D. It suffices to take E = Z(D), when identifying D
with its canonical image in A.
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Proposition 3.2.5 Let A and B two central simple F-algebras. For every integer r ≥ 1, we have

Mr(A) ≃ Mr(B) if and only if A ≃F B.

Proof. By theorem 3.2.1 we may write

A ≃ Mr1
(D1) and B ≃ Mr2(D2).

where D1, D2 are central division F-algebras and r1, r2 are positive integers. Therefore, if Mr(A) ∼
Mr(B), then we have Mrr1

(D1) ≃ Mrr2(D2). It follows then by proposition 3.2.3 that r1 = r2 and
D1 ≃ D2 (as F-algebras) which implies A ≃F B.

Lemma 3.2.4 Let D be a finite dimensional division algebra over an algebraically closed field F. Then,
D is isomorphic to F.

Proof. Let d ∈ D, d be a nonzero element of D. As D is finite dimensional, the powers 1, d, . . . , di, . . . .
are linearly dependent over F. Therefore, we can write :

m−1

∑
k=0

αkdk + dm = 0.

for some m that can be chosen to be the smallest possible with all αk ∈ F. Now, consider the polynomial
π(x) = α0 + α1x + . . .+ xm. Since F is algebraically closed, π has a root r in F i.e π(x) = (x− r)q(x)
with deg(q) = deg(π)− 1 . Evaluating at d we obtain π(d) = (d− r)q(d) = 0. As π was chosen to
be of smallest degree, q(d) ̸= 0. Hence d = r ∈ F, thus D = F.

Corollary 3.2.2 If F is algebraically closed, then every central simple F-algebra is isomorphic to a
(square) matrix algebra with entries in F.

Proof. Let A be an F-algebra. By theorem 3.2.1, A ≃ Mn(D) for some integer positive n and some
central division algebra D over F. By lemma 3.2.4 D is isomorphic to F, so A is isomorphic to the matrix
algebra Mn(F).

Throughout the rest, we assume familiarity with the properties of tensor products of modules and (asso-
ciative) algebras. For more details, we refer the reader to Chapter 9 in Pierce book [21]. We now recall
the main properties of the tensor product of F-algebras.
We summarize here some properties of tensor products of algebras that we will need in what follows : Let
A, B and C be F-algebras.

∗ Note that If (ei)i∈I and (e
′
j)j∈J are F-bases of A and B, respectively, then (ei ⊗ e

′
j)(i,j)∈I×J is a

F-basis of A⊗F B.

∗ In particular, the above yields that A⊗F B is finite-dimensional F if and only A and B are so, and
in this case we have

dimF(A⊗F B) = dimF(A)dimF(B). (3.1)

∗ Let f : A −→ C, g : B −→ C be homomorphisms of F-algebras such that f (a)g(b) = g(b) f (a)
for all (a, b) ∈ A× B. Then there exists a unique homomorphism of F-algebras h : A⊗F B −→ C
such that

h(a⊗ 1) = f (a) and h(1⊗ b) = g(b) for all a ∈ A, b ∈ B. (3.2)

∗ If f : A −→ B and g : A
′ −→ B

′
are homomorphisms of F-algebras. Then f ⊗ g : A⊗ A

′ −→
B⊗ B

′
is a homomorphism of F-algebras satisfying

( f ⊗ g)(a⊗ b) = f (a)⊗ g(b) for all a ∈ A, b ∈ B. (3.3)

Moreover, if f and g are isomorphisms, then so is f ⊗ g.
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∗ Let E/F be a field extension. If B is also an E-algebra, then A⊗F B has a natural structure of an
E-algebra, where the structure of E-vector space is defined by (linearly) extension of the equalities:

α(a⊗ b) = a⊗ αb for all α ∈ E, a ∈ A, b ∈ B. (3.4)

In particular A⊗F E has a natural structure of an E-algebra. Moreover, A⊗F E is finite dimen-
sional over E if and only if A is finite dimensional over F. Furthermore, in this case we have

dimE(A⊗F E) = dimF(A). (3.5)

We have also a natural isomorphism of E-algebras

(A⊗F B)⊗E B ≃E A⊗E B. (3.6)

∗ We have a natural E-algebra isomorphism

(A⊗F B)⊗F E ≃E (A⊗F E)⊗E (B⊗F E) (3.7)

Hence, if L ⊆ F ⊆ E is a tower of field extensions, then we have

(A⊗L F)⊗F E ≃E A⊗F E.

∗ We have (the associativity property of tensor products) :

(A⊗F B)⊗F C ≃ A⊗F (B⊗F C). (3.8)

∗ We have also (the commutativity property of tensor products) :

A⊗F B ≃ B⊗F A. (3.9)

∗ If A is an algebra over F, and E/F be a field extension. We call the E-algebra

AE := A⊗F E (3.10)

the scalar extension of A by E. We have dimF(A) = dimE(AE).

∗ For any positive integers m, n, we have a natural isomorphism of algebras :

Mm(A)⊗F Mn(B) ≃ Mmn(A⊗F B). (3.11)

∗ We have also a natural isomorphism of F-algebras :

Mm(Mn(A)) ≃ Mmn(A). (3.12)

∗ For a field extension E/F, we have a natural F-algebra isomorphism Mn(F)⊗F A ≃F Mn(A).
Also we have a natural E-algebra isomorphism Mn(F)⊗ E ≃E Mn(E).

Proposition 3.2.6 Let F be a field and let A, B be F-algebras. The following statements hold :

1) If A and B are central, then so is A⊗F B.

2) If A is central simple and B is simple, then A⊗F B is simple.

3) If A and B are central simple, then A⊗F B is central simple.

4) If A⊗F B is a simple then A and B are simple algebras.
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Proof. 1) Let x = ∑i ai ⊗ bi ∈ Z(A⊗F B). We may assume bi belong to a basis of B, so that the ai

are then uniquely determined. For every a ∈ A, we have

∑
i

aai ⊗ bi = (a⊗ 1)x = x(a⊗ 1) = ∑
i

aia⊗ bi

So, for all i, we have aai = aia, which implies ai ∈ F. We can then write x = ∑i 1⊗ aibi = 1⊗ c
where c = ∑i aibi. Using the fact that x commutes with 1⊗ B, we get c ∈ F. Thus, Z(A⊗F B) =
F.

2) Let J be a nonzero two-sided ideal of A⊗F B. Fix a basis (bi)i of B and let x = ∑
r
i=1 ai ⊗ bi ∈ J

with r is minimal. In particular, a1 ̸= 0, so by the simplicity of A we have Aa1A = A, we may
modify x on both sides by elements of A⊗ 1 to arrange that x is of the form x = 1⊗ b1 +∑i≥2 ai⊗
bi. Now, for a ∈ A, we have

(a⊗ 1)x− x(a⊗ 1) =
n

∑
i=2

(aai − aia)⊗ bi ∈ J

This must be zero (by minimality of r), hence aai = aia for all a ∈ A and for all i ≥ 2. So,
ai ∈ Z(A) = F. Therefore, we can write the element x = 1⊗ b for some nonzero element of B.
Thus, J contains an element of the form 1⊗ b with b ̸= 0. Note that B being a simple algebra,
then so is 1⊗ B. Note also that J ∩ (1⊗ B) is a two-sided ideal of 1⊗ B, it is nonzero because
it contains 1⊗ b, so it must be equal to 1⊗ B. Therefore, J contains 1⊗ B. But then it contains
(A⊗ 1)(1⊗ B) = A⊗ B.

3) Follows from 1) and 2).

4) Since A⊗F B is simple algebra, then A⊗F B ̸= 0, hence A ̸= 0 and B ̸= 0. Assume that A is not
a simple algebra. Then, there exists be an F-algebra C and a nonzero homomorphism of F-algebras
ψ : A −→ C such that ker(ψ) ̸= 0. Let Φ := ψ ⊗ idB : A ⊗F B −→ C ⊗F B, then Φ is a
nonzero homomorphism and we have

ker(ψ)⊗ B ⊆ ker(Φ)

So, ker(Φ) ̸= 0. But this yields that A⊗F B is not a simple algebra, a contradiction.

Definition and Notation 3.2.1 Let A be an F-algebra and B be a subalgebra of A. The centralizer (or
the commutator) of B in A is

CB
A = {a ∈ A | ab = ba, for all b ∈ B}. (3.13)

It is easy to check that CB
A is also a subalgebra of A which contains Z(A). Furthermore, we have B ⊆ CB

A

if and only if B is commutative. Note that C
Z(A)
A = A and CA

A = Z(A).

Lemma 3.2.5 Let A be a (finite-dimensional) central simple F-algebra, B be a simple subalgebra of A
with E and C a subalgebra of CB

A, then the following statements are equivalent :

1) A = BC

2) dimF(A) = dimF(B)dimF(C).

3) The canonical injections ıB : B −→ A and ıC : C −→ A induce canonically an isomorphisms of
algebras Φ : B⊗ C −→ A.
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Proof. 1) ⇒ 2) Let (ei)i∈I be a basis of B, (e
′
j)j∈J be a basis of Cand assume that there exist γij ∈ F

such that ∑i,j γijeie
′
j = 0. We have ∑i ei(∑j γije

′
j) = 0, so putting di = ∑j γije

′
j, we get ∑i eidi = 0

with all di ∈ C, so for all di = 0, i.e. ∑j γije
′
i = 0 but since (e

′
)j∈J is a basis of C, so for all i, j, we have

∀j ∈ J γij = 0. This shows that (eie
′
j)(i,j)∈I×J is a free family of elements of A (over F). By assumption,

we have A = BC, so (eie
′
j)(i,j)∈I×J is a basis of A. Hence dimF(A) = dimE(B)dimF(C).

2) ⇒ 3) Since ıB : B −→ A and ıC : C −→ A are be homomorphisms of algebras and C ⊆ CB
A,

then the bilinear map b : B ⊗F C −→ A, (b, c) 7−→ bc, induces an algebra homomorphism Φ :
B ⊗F C −→ A. Since all F-linearly independent family of elements of B is still linearly independent
over C, then necessarily Φ is injective. Moreover, since dimF(A) = dimF(B)dimF(C), then Φ is an
algebra isomorphism.
3)⇒ 1) Clear.

Lemma 3.2.6 Let A, B be two F-algebras and C := A⊗F B. Then :

1) CA⊗FF
C = Z(A)⊗F B.

2) Z(C) = Z(A)⊗F Z(B)

Proof. 1) Let (ei)i∈I be a basis of B. Then every element d ∈ A ⊗F B can be written in the form
d = ∑ ai ⊗ ei for some ai ∈ A. In particular, if d = 0, then ai = 0, for all i. Now if d =

∑ ai ⊗ ei ∈ CA⊗FF
C , then for any a ∈ A, we have (a⊗ 1)d = d(a⊗ 1), so ∑(aai − aia)⊗ ei = 0,

which implies that aai = aia, for all i, i.e., ai ∈ Z(A). Hence CA⊗FF
C ⊆ Z(A)⊗F B. The inverse

sense is trivial. Thus CA⊗FF
C = Z(A)⊗F B.

2) We have C = A ⊗F B = (A ⊗F F)(F ⊗F B), so Z(C) = CA⊗FF
C

⋂
CF⊗FB

C = (Z(A) ⊗
B)

⋂
(A⊗F Z(B)) = Z(A)⊗F Z(B).

Proposition 3.2.7 Let E/F be a field extension and A be a central simple F-algebra. Then A⊗F E is a
central simple algebra over E (when we identify F⊗F E with E).

Proof. By proposition 3.2.6 A⊗F E is simple E-algebra and by lemma 3.2.6 Z(A⊗F E) = Z(A)⊗ E =
F⊗F E ≃ E.

Definition 3.2.5 (Opposite algebra) Given an F-algebra A, we denote by Aop the F-algebra that we
get from A just by reversing the order of multiplication in A (i.e., the algebra over F having the same
underlying set of element as A and for which the addition and scalar multiplication are those of A). We
call this algebra the opposite algebra of A.

Proposition 3.2.8 Let A be a central simple algebra over F. Then, Aop is a central simple algebra over
F.

Proof. Clear.

Proposition 3.2.9 Let A be a central simple algebra over F. Then the dimension of A over F is a square.

Proof. Let F be an algebraic closure of F, then by corollary 3.2.2, there is a positive integer r such that
AF ≃ Mr(F) (as F-algebras). Thus,

dimF(A) = dimF(AF) = dimF(Mr(F)) = r2 (3.14)

Definition 3.2.6 Let A be a central simple F-algebra. The integer
√

dimF(A) is called the degree of A.
The Schur index of A is the degree of the underlying division algebra of A. We denote it by ind(A), i.e.,
ind(A) = deg(D), where D is the underlying division algebra of A.
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Lemma 3.2.7 Let A be a central simple algebra over F with degree r. Then A⊗F Aop ≃ Mr(F) (as a
F-algebras).

Proof. Let’s consider the mapping

Ψ : A −→ EndF(A)
a 7−→ Ψ(a) := la

where la(x) = ax, for all x ∈ A. It is clear that Ψ is F-algebra homomorphism.
In the same way, we define the F-algebra homomorphism

Φ : Aop −→ EndF(A)
a −→ Φ(a) := l

op
a

where l
op
a (x) = xa, for all x ∈ A. One can check that the images of Ψ and Φ commute in EndF(A).

So, there is a unique F-algebra homomorphism Θ : A ⊗F Aop −→ EndF(A) satisfying Θ(a ⊗ b) =
Ψ(a)Φ(b). Since A ⊗F Aop is simple, Θ is injective. Moreover, we have the equalities dimF(A ⊗F

Aop) = dimF(EndF(A)) = r2. So hence, Θ is also surjective. It suffices now to see that EndF(A) is
isomorphic to Mr(F) (as F-algebras).

Theorem 3.2.2 (Double centralizer theorem (DCT)) Let A be a central simple algebra over F and let B
be a simple subalgebra of A. Then, the following properties hold :

1) The centralizer CB
A of B in A is a simple subalgebra of A having the same center as B. Moreover,

we have
dimF(A) = dimF(B)dimF(C

B
A). (3.15)

2) We have C
CB

A
A = B.

Proof. 1) To show that CB
A is simple, we will show that CB

A ≃ EndC(A), where C := B ⊗F Aop

and where A is considered as a left C-module for the operation defined by linearly extending the
following equalites :

(α⊗ γ)x = αxγ for all γ ∈ Aop, α ∈ B and x ∈ A (3.16)

Consider the map
Φ : CB

A −→ EndC(A)
c 7−→ Φ(c)

where Φ(c) : x 7−→ cx, for any x ∈ A. It is clear that Φ is a F-algebra homomorphism. In
particular, we have c = Φ(c)(1) = 0, hence Φ is injective. One can easily see that Φ is also
surjective. Indeed, let g ∈ EndC(A) and let c = g(1), then for every b ∈ B, we have :

cb = (1⊗ b)c = (1⊗ b)g(1) = g((1⊗ b)1) = g(b).

We have also bc = (b⊗ 1)c = (b⊗ 1)g(1) = g((b⊗ 1)1) = g(b), Consequently, cb = bc, that
is c ∈ CB

A. Moreover, for any x ∈ A, we have

Φ(c)(x) = cx = (1⊗ x)c = (1⊗ x)g(1) = g((1⊗ x)) = g(x)

Thus g = Φ(c). Now, we aim to prove the two F-algebras CB
A and EndC(A) have some di-

mension (over F). Note that by proposition 3.2.6 C is a simple algebra. Moreover, since C is
finite-dimensional over F, then C is also semisimple, so there is a C-module N, up to an isomor-
phism, such that every C-module is a finite direct sum of copies of N. In particular, A ≃ Nr, for
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some positive integer r. Let D := EndC(N). As N is a simple C-module, it follows by lemma
3.1.1 that D is a division algebra. We proved above that CB

A ≃ EndC(A), so

CB
A ≃ EndC(A) ≃ EndC(Nr) ≃ Mr(EndC(N)) = Mr(D).

Therefore, we have
dimF(C

B
A) = dimF(Mr(D)) = r2dimF(D) (3.17)

It is clear that N is also a D-module, so we have N ≃ Dm, for some positive integer m, so

C = EndD(N) ≃ EndD(Dm) ≃ Mm(D).

Thus A ≃ Drm, hence
dimF(A) = rmdimF(D) (3.18)

On the other hand, we have

dimF(A)2 = dimF(C)dimF(EndC(A)) = dimF(B⊗F Aop)dimF(C
B
A) = dimF(B)dimF(Aop)dimF(C

B
A)

Hence
dimF(A) = dimF(B)dimF(C

B
A).

2) Since CB
A is simple, applying 1) gives

dimF(C
B
A)dimF(C

CB
A

A ) = dimF(A)

Since
dimF(B)dimF(C

B
A) = dimF(A)

We deduce that

dimF(B) = dimF(C
CB

A
A )

Now, the definition easily imply that B ⊆ C
CB

A
A . The equality between dimensions then implies that

B = C
CB

A
A .

The Skolem§-Noether theorem

For a ring R and unit r ∈ R×, Int(r)(x) := r−1xr is an automorphism of R. Such automorphisms are
called an inner automorphisms of R.

Lemma 3.2.8 Let A be a (finite-dimensional) simple F-algebra and suppose that B is an F-space. Let ϕ
and ψ be two F-algebras homomorphisms of A to EndF(B), then there exists θ ∈ EndF(B)× such that
ϕ(a) = θ−1ψ(x)θ for all x ∈ A.

Proof. See [21, Lemma, p. 230].

Theorem 3.2.3 Let A be a central simple algebra over F and let B be simple F-subalgebra of A. For any
F-algebra homomorphism φ : B −→ A there exists a ∈ A× such that φ(x) = a−1xa for all x ∈ B.

§Thoralf Albert Skolem (Norwegian 23 May 1887-23 March 1963) was a Norwegian mathematician who worked on
mathematical logic and set theory.
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Proof. By lemma 3.2.7, there is an algebra isomorphism Λ : A ⊗ Aop −→ EndF(A). Define ϕ :=
Λ(id⊗ φ) : Aop ⊗ B −→ EndF(A) and ψ := Λ(id⊗ j) : Aop ⊗ B −→ EndF(A), where j : B −→ A
is the inclusion homomorphism. Since Aop ⊗ B is simple (see proposition 3.2.6), it follows from lemma
3.2.8 that there exists θ ∈ EndF(A)× such that ϕ(x⊗ y) = θ−1ψ(x⊗ y)θ for all x ∈ Aop, y ∈ B. Let
z = Λ−1(θ) ∈ Aop ⊗ A. Since θ is unit, so is z and θ−1 = Λ(z−1). Moreover,

Λ(z(x⊗ φ(y))) = Λ(z)Λ(x⊗ φ(y))
= θϕ(x⊗ y)
= ψ(x⊗ y)θ
= Λ((x⊗ y)Λ(z))
= Λ(x⊗ y)z)

Since Λ is injective, then

x⊗ φ(y) = z−1(x⊗ y)z for all x ∈ Aop, y ∈ B (3.19)

By taking y = 1 in (3.19), we get z(x ⊗ 1) = (x ⊗ 1)z that is z ∈ CAop⊗F
A⊗Aop = F ⊗ A (see lemma

3.2.6). Similarly, z−1 ∈ F ⊗ A, therfore z = 1⊗ v and z−1 = 1⊗ v, with u, v ∈ A. Hence uv = 1,
u ∈ Aop and v = u−1. Finally, if x = 1 in (3.19) then 1⊗ φ(y) = 1⊗ u−1yu for all y ∈ B, therfore
φ(y) = u−1yu.

3.3 Cyclic algebras

We will usually denote a cyclic Galois group by ⟨σ⟩, where σ is a generator of the group G.

Definition 3.3.1 Let M/F be a cyclic Galois field extension of dimension n with Galois group G =
Gal(M/F) generated by σ. Choose an element β a nonzero element of E. We construct a non-commutative
algebra A, denoted by (M/F, σ, β), as follows :

A = M
⊕

Me
⊕
· · ·

⊕
Men−1

where e is an indeterminate satisfying the multiplicative conditions :

en = β and λe = eσ(λ) for all λ ∈ M (3.20)

(the addition and scalar multiplication being defined componentwise). Such an algebra is called a cyclic
algebra.

Notation. When there is no risk of confusion, we omit F and the algebra A we will denoted by (M, σ, β).

Remark 3.3.1 Assume that char(F) ̸= 2, M = F(
√

d) be a quadratic extension, defined by an element
d ∈ F∗, and let σ be the unique nontrivial F-automorphism of M. Then we have (M/F, σ, β) ≃F (a, b)F.
Hence cyclic algebras may be viewed as a generalization of quaternion algebras. (See [4, Remark VII.1.4,
p.130]).

Let A be a central simple algebra over F and let K be a subfield of A (i.e., a field extension of F in A),
then dimF(K) ≤ deg(A) (see [21, Corollary a, p.236]). Let A be a central simple algebra over F and
let K be a subfield of A. If dimFK = deg(A), then we say that K is a strictly maximal subfield of A.
Such subfield does not always exist, but when A is a division algebra, then any maximal subfield of A is
strictly maximal (see [21, corollary b, p.236]). We say that a field extension L of F is a splitting field of
A if A⊗F L is isomorphic to a matrix algebra over F, i.e., if and only if the underlying division algebra
of A⊗F L is L.
If K is a strictly maximal subfield of A, then K is a splitting field of A (see [21, Corollary, p.241]). In
particular, if A = (M/E, σ, β) is a cyclic algebra, then M is a strictly maximal subfield of A, so M is a
splitting field of A.
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Example 3.3.1 Consider the real matrix algebra A = Mr(H) for some positive integer r. We have
dimR(A) = 4r2. Note that R and C are the only finite field extensions of R. Therefore A has no strictly
maximal subfields for any r ∈ N∗.

Theorem 3.3.1 The cyclic algebra A = (M/F, σ, β) is a central simple algebra over F.

Proof. The arguments of this proof were used before several times. Let

x = x0 + x1e + . . . + xn−1en−1

be an element of the center of A. The equation xe = ex gives rise to the following equalities

xn−1β + x0e + . . . + xn−2en−1 = σ(xn−1)β1 + σ(x0)e + . . . + σ(xn−2)e
n−1.

Now the equation x(α1) = αx for all α ∈ M gives

x0α1 + x1σ(α)e + . . . + xn−1σn−1(α)en−1 = αx01 + αx1e + . . . + αxn−1en−1.

Hence x1 = · · · = xn−1 = 0. So, Z(A) = F.
Let J be a two-sided nonzero ideal of A and let x = x0 + x1e + . . . + xmem be a nonzero element of J
with m minimal. If m = 0, then x = x0 ∈ E, so J = A.
Suppose that m > 0, and suppose that J ̸= A, then consider an element α ∈ M such that σi(α) ̸= α for
all σi ̸= id. Then, the following contradicts the minimality of m :

(αx− xα)e−1 ∈ J.

Theorem 3.3.2 A central simple algebra A of dimension n2 is isomorphic to a cyclic algebra if A con-
tains a subfield M of dimension n over F such that M/F is a cyclic Galois field extension.

Proof. Let σ be a generator of the Galois group of M/F. By Skolem-Noether theorem, there is an
invertible element e of A such that

σ(α) = eαe−1.

for all α ∈ M. Since conjugation by en is the identity on M, we see en ∈ CM
A = M. Since eene−1 = en,

in fact en is a central element of A, so en ∈ F. It remains to prove that 1, e, . . . , en−1 are linearly
independent over M. Otherwise, we consider a relation

x = x0 + x1e + . . . + xmem = 0

with xm ̸= 0 and m minimal. This leads to a contradiction in the same way as above : Choose a primitive
element α ∈ E and consider the equality 0 = (αx − xα)e−1. This leads to a contradiction with the
minimality of m.

Definition 3.3.2 (Norm and Trace) Let M/F be a Galois field extension of dimension n, with σ1, . . . , σn

denoting all elements of Gal(M/F). For an element x of M, the elements σ1(x), σ2(x), . . . , σn(x) are
called the conjugates of x and

N(x) =
n

∏
i=1

σi(x), Tr(x) =
n

∑
i=1

σi(x).

are called, respectively, the norm and the trace of x.

Remark 3.3.2 Whenever the context is not clear, we write NM/F, resp., TrM/F to avoid ambiguity.

Definition 3.3.3 A cyclic algebra which is also a division algebra is called a cyclic division algebra.

Theorem 3.3.3 Let M/F be a cyclic field extension of dimension n with Galois group Gal(M/F) =
⟨σ⟩. If 0 ̸= β, β2, . . . , βn−1 are not a norm of elements of M, then (M/F, σ, β) is a cyclic division
algebra.

Proof. See [21, 45, p.279].
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3.4 Brauer group and Crossed products

3.4.1 The Brauer group

Let F be a field and let CSA(F) be the class of all central simple algebras over F. We say that two central
simple F-algebras A and B are similar, denoted by A ∼ ¶B, if there are positive integers r1 and r2 such
that Mr1

(A) is isomorphic to Mr2(B) as a F-algebra. In the next lemma we prove that this defines an
equivalence relation on CSA(F), which reduces to F-algebra isomorphism when the two central simple
algebras have the same dimension over F.

Lemma 3.4.1 Let F be a field. Then∼ is an equivalence relation on CSA(F), which reduces to F-algebra
isomorphism when two central simple algebras have the same dimension over F.

Proof. It is clearly that ∼ is reflexive and symmetric on CSA(F). Let A, B and C be elements of CSA(F)
such that A ∼ B and B ∼ C. Then there are r1, r2, r3, r4 ∈ N∗ such that

Mr1
(A) ≃ Mr2(B) and Mr3(B) ≃ Mr4

(C)

So we have

Mr1r3(A) ≃ Mr3(Mr1
(A)) ≃ Mr3(Mr2(B)) ≃ Mr2(Mr3(C)) ≃ Mr2(Mr4

(C)) ≃ Mr2r4
(C).

Hence A ≃ C. Consequently, ∼ is also transitive. The rest follows by applying Wedderburn’s theorem.

The next proposition shows that the tensor product is a class invariant under similarity.

Proposition 3.4.1 Let A, B, A
′

and B
′

be central simple F-algebras such that A ∼ A
′

and B ∼ B
′
.

Then A⊗F B ∼ A
′ ⊗F B

′
.

Proof. There exists r1, r2, r3, r4 ∈ N∗ such that

Mr1
(A) ≃ Mr2(A

′
) and Mr3(B) ≃ Mr4

(B
′
)

Observe that
Mr1

(A)⊗F Mr2(B) ≃ Mr3(A
′
)⊗F Mr4

(B
′
).

and that (3.11) implies that we have the F-algebra isomorphism

Mr1r2(A⊗F B) ≃ Mr3r4
(A

′ ⊗F B
′
).

Hence A⊗F B ∼ A
′ ⊗F B

′
.

Remark 3.4.1 Observe that for a field F the class CSA(F) is not empty, since for every positive integer
n, the matrix algebra Mn(F) is an element of CSA(F).

Theorem 3.4.1 Let F be a field. Then there exists a pair (G, s) consisting of a group G and a surjective
map s : CSA(F) −→ G that satisfy for every two central simple F-algebras A and B the following
conditions :

i) s(A⊗F B) = s(A)s(B).

ii) The equality s(A) = s(B) holds if and only if A and B are Brauer equivalent.

¶ When A ∼ B we say also A and B are Brauer equivalent.
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Moreover, the pair (G, s) is uniquely determined up to a unique isomorphism, that is, if (G
′
, s
′
) is another

pair satisfying the above, then there is a unique group isomorphism β : G −→ G
′

such that we have the

equality s
′
= β ◦ s.

Proof. Let K be a subclass of CSA(F) that is a set such that every element of CSA(F) is isomorphic as a
F-algebra to at least one element of K, and let G be the quotient set of K by ∼, i.e., G := K/ ∼. For an
element A of CSA(F) we let [A] denote the element of G that contains the elements of K that are Brauer
equivalent to A, which gives a surjective map

π : CSA(F) −→ G
C 7−→ [C]

Now, We will show that G is an abelian group under the tensor product over F. To this end, observe that
the map

u : G× G −→ G
([B], [C]) 7−→ [B⊗F C]

is well-defined by proposition 3.4.1, so it remains to prove that G satisfies the group axioms and commu-
tativity with respect to the tensor product.

∗ Observe that for any central simple algebra A over F, it clearly holds that A⊗F F is isomorphic to
A as a F-algebra. Hence, [F] functions as the identity element of G under the tensor product over
F.

∗ Associativity follows from (3.8), and commutativity follows from (3.9).

∗ The existence of inverse elements in G is proven by lemma 3.2.7, which states that the inverse of
an element [A] of G is given [Aop], where Aop is the opposite algebra of A.

Consequently, we have showed that G is an abelian group under the tensor product over F.
It is clear that for every A, B ∈ CSA(F) the map π satisfies the equality π(A ⊗F B) = π(A)π(B),
hence, we have a pair (G, π) with s = π that satisfies the theorem.

Now, if (G
′
, s
′
) is another pair that satisfies the theorem, and define

β : G −→ G
′

[A] 7−→ s
′
(A)

It is clear that β is a unique group isomorphism satisfying the equality s = β ◦ s
′
. It follows that (G, s)

is uniquely determined up to isomorphism.

Definition 3.4.1 The group of the uniquely determined pair (G, s) is called the Brauer group of F,
denoted by Br(F), and is written multiplicatively. For a central simple algebra A over F, we denote
s(A) by [A].
Moreover, an element b of Br(F) is often denoted by [A], where A is an element of CSA(F) that is similar
to an element of b.

Definition 3.4.2 The exponent of A (or period of A) is the order of [A] in Br(F).

Proposition 3.4.2 Every element of Br(F) contains a unique central division F-algebra up to isomor-
phism.

Proof. This follows by applying Wedderburn’s theorem.
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Some examples of Brauer groups

1) We have already seen in corollary 3.2.2 that there are no nontrivial central division algebras over
an algebraically closed field. So the Brauer group of an algebraically closed field is trivial.

2) Let F be a finite field, then by [Joseph Wedderburn] F is the unique central division algebra over F,
so the Brauer group of F is trivial.

3) By [15, 6.6 Die Brauergruppe von R, p.54], R and H are the only central division algebras over
R. Consequently, the Brauer group of R is isomorphic to Z/2Z.

The Brauer group as a functor

For any nonzero homomorphism ψ : F −→ M between fields, one can consider M as a field extension
of F and then form the tensor product A⊗F M that we denote by Aψ. In what follows a homomorphism
between fields will always mean a nonzero homomorphism.

Lemma 3.4.2 Let ψ : F −→ M be a field homomorphism. Then the mapping Br(ψ) : Br(F) −→
Br(M) defined by [A] 7−→ [Aψ], is a group homomorphism.

Proof. Let ψ : F −→ M be a field homomorphism and let A be a central simple algebra over F. Aψ is
central simple over E. Define the map

Br(ψ) : Br(F) −→ Br(M)
[A] 7−→ [Aψ]

and observe that this is a well-defined function by proposition 3.4.1. Moreover, by associativity and
commutativity of the tensor product (see (3.8) and (3.9)), we have

Br(ψ)([A])Br([B]) = [A⊗F M][B⊗F M]
= [(A⊗F M)⊗M (B⊗F M)]
= [A⊗F (M⊗F B)]
= [(A⊗F B)⊗F M]
= Br(ψ)([A⊗F B])

This shows that Br(ψ) is a group homomorphism.

Notation. Let F ield denote the category of fields with morphisms given by field homomorphisms, and
let Ab denote the category of abelian groups with morphisms given by group homomorphisms.

Theorem 3.4.2 The Brauer group defines a covariant functor Br : F ield −→ Ab that maps a field F to
Br(F) and maps a field homomorphism ψ to Br(ψ).

Proof. Clear.

Let K be a field extension of F and consider the canonical group homomorphism ϕK/F : Br(F) −→
Br(K), [A] 7−→ [A⊗F K]. Plainly, ker(ϕK/F) is a subgroup of Br(F). We call it the relative Brauer
group of K/F.



135

Relative Brauer groups

In this subsection, we show that for every central simple algebra A over a field F there exists a finite
Galois extension of F (i.e., a finite-dimensional Galois field extension of F) that splits A. This enables us
to write the Brauer group of F as a union of relative Brauer groups of finite Galois extensions of F, i.e

Br(F) =
⋃

K⊇F finite Galois

Br(K/F).

Remark 3.4.2 Let A be a central simple algebra over F and let K be a field extension of F. Then, by
definition K is a splitting field of A if and only if [A] ∈ Br(K/F).

Theorem 3.4.3 Let x be an element of Br(F). Then there is a separable field extension K ⊇ F such that
x is an element of Br(K/F).

Proof. See [15, Existenz eines separablen Zerfällungskörpers, p.47].

Corollary 3.4.1 Let x be an element of Br(F). Then there is a finite Galois field extension E ⊇ F such
that x is an element of Br(E/F).

Proof. Indeed, by the previous theorem, we can consider a separable field extension M of F such that
x ∈ Br(M/F). It suffices to take a Galois field extension K of F that contains M.

Corollary 3.4.2 For any field F. We have the following equality

Br(F) =
⋃

K⊇F finite Galois

Br(K/F).

Proof. Clear.

3.4.2 Crossed products

In this section, we will construct a very important type of central simple algebra via a finite Galois field
extension of F. This algebra is called crossed product. As will be seen later, this algebra will connect
the Brauer group of a field F to a second Galois cohomology group obtained by considering all finite-
dimensional Galois field extensions of F.
Throughout this subsection, when not mentioned, we assume that K/F is a finite Galois field extension.
We assume throughout the rest familiarity with basic (Galois) cohomological notions. In particular, recall
that when considering a finite Galois field extension with Galois group G, then a 2-cycle of G with values
in K∗ is a map a : G× G −→ K∗ satisfying a(σ, τ)a(στ, γ) = a(σ, τγ)σ(a(σ, γ)) for all σ, τ, γ ∈ G.

Proposition 3.4.3 Let K/F be a finite Galois extension with Galois group Gal(K/F). Let a be a 2-
cocycle of G with values in K∗ and let A be a left vector space over E with basis {eσ}σ∈G the multiplica-
tion defined by (

∑
σ∈G

xσeσ

)
·
(

∑
τ∈G

yτeτ

)
= ∑

σ∈G
∑

τ∈G

xσσ(yτ)a(σ, τ)eστ (3.21)

where xσ, yτ ∈ K for σ, τ ∈ G. Then, A is a central simple algebra over F that contains K as a strictly
maximal subfield.

Proof. Let σ, τ, ρ ∈ G, Then

a(σ, τ)a(στ, ρ) = σ(a(τ, ρ))a(σ, τ) (3.22)

Using (3.22), one can see that A is indeed an associative algebra with unit (equal to a(id, id)−1eid. It is
clear that dimF A = (dimFK)2, so K is a strictly maximal subfield of A. Also, since for all x, y ∈ K∗
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and σ, τ ∈ G, wehavexeσyeτ = xσ(y)a(σ, τ)eστ, then one can easily see that Z(A) = K∗ (for K/F is
a Galois field extension).
A is a simple algebra . Indeed, let I be a nonzero two-sided of A and let x = ∑

r
i=1 xσi

eσi
be a nonzero

element of I, where all xσi
∈ K (with r is minimal integer). Suppose that r > 1 and choose z ∈ K such

that σ1(z) ̸= σ2(z)

σ1(z)
−1xz = σ−1

1 xσ1
σ1(z)eσ1

+ σ−1
1 (z)xσ2σ2(z)eσ2 + . . . .

We get 0 ̸= x − σ1(z)
−1xz ∈ I, which contradicts the minimality of r, so x = yeσ for some y ∈ E∗,

σ ∈ G. But in this case, x will be an invertible element of A, so I = A.

Definition 3.4.3 The central simple algebra A over F defined in proposition 3.4.3 is called the crossed
product algebra over F of K and G with respect to a, denoted by (K, G, a).

Proposition 3.4.4 Let K/F be Galois field extension with Galois group G, and let a, b : G× G −→ K∗

be two 2-cocycle. Then
(K, G, a)⊗F (K, G, b) ∼ (K, G, ab).

Proof. See [15, Multiplikativitätssatz, p.68].

Remark 3.4.3 A cyclic algebra is an example of a crossed product. Indeed, let (K, G, β) be a cyclic
algebra as defined in section 3.3. We can define a 2-cocycle as follows :

a : G× G −→ E∗

(σi, σj) 7−→
{

1 if i + j < n
β if i + j ≥ n

One can check that the F-algebra (K, G, a) is isomorphic to (K, σ, β). For more details we refer to [15,
section 10.3 Existenzsatz, p.83].

3.5 Cohomological interpretation of the Brauer group

As claimed in the previous subsection, we will see here that the relative Brauer group Br(K/F) of a
(finite) Galois field extension K/F is isomorphic to the second cohomology group H2(Gal(K/F), K∗).

Proposition 3.5.1 Let K ⊇ F be a finite Galois extension with Galois group G. Then two 2-cocycles a
and b of G with values in K∗ are cohomologous if and only if (K, G, a) and (K, G, b) are isomorphic as
F-algebras.

Proof. See [15, 7.7 Isomorphiekriterium für verschränkte Produkte, p.63].

Theorem 3.5.1 Let x be an element of Br(F). Then for each finite Galois extension K ⊇ F that splits x,
there exists a 2-cocycle a of Gal(K/F) with values in K∗ that is unique up to cohomology such that the
crossed product algebra (K, Gal(K/F), a) is Brauer-equivalent to x.

Proof. See [15, 8, Die Isomorphie H2(G, L∗) ≃ Br(L/K), p.68].

Theorem 3.5.2 Let K/F be a finite Galois field extension. Then the map

Ψ : H2(Gal(E/F), E∗) −→ Br(E/F)
[a] 7−→ [(E, Gal(E/F), a)]

is a group isomorphism.

Proof. Using theorem 3.5.1, one sees that the map Ψ is well-defined and injective.
By theorem 3.5.1, for any element x of Br(K/F) there exists a 2-cocycle a of G with values in K∗ such
that x = [(K, G, a)]. So Ψ is surjective. Hence ψ bijection. Also by proposition 3.5.1, one sees that Ψ is
a group homomorphism, hence a group isomorphism.
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3.6 Some non-abelian cohomology

In this section we recall elementary facts about non-abelian group cohomology. Fore more details we refer
the reader to [24, Cohomologie Galoisienne].

Definition 3.6.1 Let G be a finite group.

i) A G-set E is a set equipped with a G-operation from the left. We will use the notation gx := g · x
for x ∈ E and g ∈ G.

ii) A morphism of G-sets, a G-morphism for short, is a map γ : E −→ F between G-sets such that
the diagram

G× E F

G× F F

idG×γ γ

commutes.

iii) A G-group M is a G-set carrying a group structure such that g(xy) =g xgy for every g ∈ G and
x, y ∈ M.

Note that, for all g ∈ G this forces g1M = 1M and for all x ∈ M g(x−1) = (gx)−1. If M is abelian then
it is called a G-module.

Example 3.6.1 Let G be an abelien group and H a subgroup of G. Then we can viewed G as a H-set.

For a G-set M, we let MG := {x ∈ E | gx = x for all g ∈ G}

Definition 3.6.2 Let G be a finite group.

i) For any G-module M, we set H0(G, M) := MG, the zeroth cohomology set of G with coefficients
in M is just the subset of G-invariants in M. If M is a G-group, then one can see that H0(G, M)
is a group.

ii) If M is a G-group. A map ρ : G −→ M is called a 1-cocycle if for any g, h ∈ G, we have

ρ(gh) = ρ(g) gρ(h). (3.23)

iii) Let M be a G-group. We say that 1-cocycles ρ, ρ
′

: G −→ M are cohomologous if there is x ∈ M

ρ(g) = x−1ρ
′
(g) gx, for all g ∈ G.

Remarks 3.6.1 ∗ The map G −→ M sending every element of G to 1M is a 1-cocycle. We call this
the trivial cocycle.

∗ For any G-group M and any x ∈ M, the map G −→ M given by g 7−→ x−1 gx is a 1-cocycle.

∗ For any 1-cocycle ρ : G −→ M we necessarily have ρ(1G) = 1M (this follows by (3.23)).

∗ For any G-group M, one can easily see that ’to be cohomologous’ is an equivalence relation on the
set of 1-cocycles of G in M.
The quotient set of this equivalence relation, called the first cohomology set of G with coefficients in
M, is denoted by H1(G, M), i.e., H1(G, M) = { equivalence classes of 1-cocycles ρ : G −→ M}.



138

∗ H0(G, M) and H1(G, M) are covariant functors in M. If ı : M −→ M
′

is a morphism of

G-sets then the induced map will be denoted by ı∗ : H0(G, M) −→ H0(G, M
′
), resp., ı∗ :

H1(G, M) −→ H1(G, M′).

∗ If M is abelian then the definitions above coincide with the usual group cohomology as one of the
possible descriptions for H(G, M) is just the cohomology of the complex

0 C0(G, M) C1(G, M) .... Cn(G, M) Cn+1(G, M)
θ0 θ1 θn

where Cn(G, M) := { f : Gn −→ M}, C0(G, M) = M, with the differential map θn de-
fined by θn( f )(g1, . . . , gn+1) :=g1 f (g2, . . . , gn+1) + ∑

n
j=1(−1)j f (g1, . . . , gjgj+1, . . . , gn+1) +

(−1)n+1 f (g1, . . . , gn).

Theorem 3.6.1 Let G be a finite group.

i) If N ⊆ M is G-group extension (i.e., M and N are G-groups and the action of g ∈ G on an
element x ∈ N coincides with the action of g on x when x is considered as an element of M) and
M/N is the set of left cosets, then there is a natural exact sequence of pointed sets

1 H0(G, N) H0(G, M) H0(G, M/N) H1(G, N) H1(G, M)d

ii) If in addition N is a normal subgroup of M, then there is a natural exact sequence of pointed sets

1 H0(G, N) H0(G, M) H0(G, M/N) H1(G, N)

H1(G, M) H1(G, M/N)

d

iii) ) If in particular N is a subgroup of the center of M, then there is a natural exact sequence of
pointed set

1 H0(G, N) H0(G, M) H0(G, M/N) H1(G, N) · · ·

· · · H1(G, M) H1(G, M/N) H2(G, M)

d

d
′

Here the abelian group H2(G, M) is considered as a pointed set with the unit element.

We note that a sequence

(M, a) (N, b) (P, c)i j

of pointed sets is said to be exact in (N, b) if i(M) = j−1(P).

Proof. See [14, Proposition 1.4, p.6].

Definition 3.6.3 Let ψ : G −→ G
′

be a homomorphism of finite groups. Then for an arbitrary G-set E

one has a natural pull-back map ψ∗ : H0(G
′
, E) −→ H0(G, E).

If E is a G-group then the pullback map is a group homomorphism.

For an arbitrary G-group M there is the natural pullback map ψ∗ : H1(G
′
, M) −→ H1(G, M) which

is a morphism of pointed sets.
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∗ If ψ is the inclusion of a subgroup then the pullback resG
G′ := ψ∗ is usually called the restriction

map.

∗ If ψ is the canonical projection on a quotient group then in f G
G′ := ψ∗ is said to be the inflation

map.

∗ The composition of resG
′

G or in f G
′

G with some extension of the G-set E (the G-group M) is usually
called the restriction, respectively inflation, as well.

Remark 3.6.1 Note that Non-abelian group cohomology can easily be extended to the case where G is
a profinite group and M is a discrete G-set (respectively G-group) on which G operates continuously.
Indeed, set for i = 0, 1

Hi(G, M) := lim−→
G
′

Hi(G/G
′
, MG

′
).

where the direct limit is taken over the inflation maps and G
′

runs through the normal open subgroups

G
′

of G such that the quotient G/G
′

is finite.

3.7 Some geometric interpetations of Galois descent

Let E/F be a finite Galois extension of fields with Galois group G = Gal(E/F).
The descent problem deals with the following question : When can a scheme X over E be descended to
F, that is, is there a scheme Y over F such that X ≃ Y ×Spec(F) Spec(E)? Grothendieck explored the
analogy with the classical case, where a topological space or a differentiable manifold can be constructed
by glueing together open subsets via transition functions which satisfy a compatibility condition on triple
intersections. A "descent datum" is an analogue of this for schemes.
Throughout F is a field, and E/F is usually a Galois field extension. We may assume E/F to be finite.

Definition 3.7.1 Let E be a field and F ⊆ E be a subfield such that E/F is a finite Galois extension. Let
p1 : X1 −→ Spec(E) and p2 : X2 −→ Spec(F) be two E-schemes. Then, by a morphism from p1 to
p2 that is twisted by σ ∈ Gal(E/F) we will mean a morphism ϕ : X1 −→ X2 of schemes such that the
diagram

X1 X2

Spec(E) Spec(E)

ϕ

σ♯

commutes. Here σ♯ : Spec(E) −→ Spec(E) denotes the morphism of affine schemes induced by

σ−1 : E −→ E.

The next theorem gives some equivalences of categories.

Theorem 3.7.1 Let E/F be a finite Galois extension of fields and G := Gal(E/F) be its Galois group.
Then :
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i) There are the following equivalences of categories

{
F-vector spaces } −→





E− vector spaces with a
G− operation from the left where each
σ ∈ G operates σ− linearly





{F-algebras } −→





E− algebras
with a G-operation from the left
where each σ ∈ G operates σ− linearly





{ central simple algebras over F } −→





E− algebras
with a G-operation from the left
where each σ ∈ G operates σ− linearly





{ commutative F-algebras } −→





commutative E-algebras
with a G-operation from the left
where each σ ∈ G operates σ− linearly





{ commutative F-algebras with unit } −→





commutative E-algebras with unit
with a G-operation from the left
where each σ ∈ G operates σ− linearly





A 7−→ A⊗F E

ii) here is the following equivalence of categories,

{ quasi-projective F-schemes } −→





quasi-projective E-schemes
with a G-operation from the left
by morphisms of F-schemes
where each σ ∈ G operates
by a morphism twisted by σ





X 7−→ X×Spec(F) Spec(E)

iii) Let X be a F-scheme and r be a natural number. Then there are the following equivalences of
categories

{ quasi-coherent sheaves on X } −→





quasi-coherent sheavesM
on X×Spec(F) Spec(E)
together with a system (ıσ)σ∈G

of isomorphisms ıσ : x∗σM−→M satisfying
ıτ ◦ x∗τ(ıσ) = ıστ

for every σ, τ ∈ G





{ locally free sheaves of rank r on X } −→





locally free sheaves of rank r on X
on X×Spec(F) Spec(E)
together with a system(ıσ)σ∈G

of isomorphisms ıσ : x∗σM−→M satisfying
ıτ ◦ x∗τ(ıσ) = ıστ

for every σ, τ ∈ G





F 7−→ M := π∗F

Here the morphisms in the categories are the obvious ones, i.e. those respecting all the extra struc-
tures π : X×Spec(F) Spec(E) −→ X is the canonical morphism and xσ : X×Spec(F) Spec(E) −→
X×Spec(F) Spec(E) denotes the morphism that is induced by σ♯ : Spec(E) −→ Spec(E).

Proof. See [14, Theorem 2.2, p.7].
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Proposition 3.7.1 (Galois descent-geometric version) Let E/F be a finite Galois extension of fields and
G := Gal(E/F) its Galois group Further, let Y be a quasi-projective E-scheme together with an operation
of G from the left by twisted morphisms, i.e., such that the diagrams

Y Y

Spec(E) Spec(E)

ϕσ

σ♯

commute, where σ♯ : Spec(E) −→ Spec(E). Then there exists a quasi-projective E-scheme X such that
there is an isomorphism of E-schemes

X×Spec(F) Spec(E) Yf∼

where X ×Spec(F) Spec(E) is equipped with the G-operation induced by the one on Spec L and f is
compatible with the operation of G.

Proof. See [14, Proposition 2.5, p.9].

Proposition 3.7.2 (Galois descent for quasi-coherent sheaves) Let E/F be a finite Galois extension
of fields and G := Gal(E/F) be its Galois group. Further, let X be a F-scheme, π : X ×Spec(F)

Spec(E) −→ X the canonical morphism and xσ : X ×Spec(F) Spec(E) −→ X ×Spec(F) Spec(E) be the

morphism induced by σ♯ : Spec(E) −→ Spec(E).
Let M be a quasi-coherent sheaf over X ×Spec(F) Spec(E) together with a system (ıσ)σ∈G of isomor-
phism ıσ : x∗σM −→ M that are compatible in the sense that for each σ, τ ∈ G there is the relation
ıτ ◦ x∗τ(ıσ) = ıστ.
Then there exists a quasi-coherent sheaf F over X such that there is an isomorphism

π∗F Mb

under which the canonical isomorphism iσ : x∗π∗F = (πxσ)∗F : π∗F = π∗F −→ π∗π∗F is
identified with ıσ fr each σ, i.e. the diagrams

x∗σπ∗F x∗σM

π∗F M

x∗σ(b)

b

ıiσ

commute.

Proof. See [14, Proposition 2.6, p.10].

Remark 3.7.1 Note there is a Galois descent-algebraic version. We refer the reader to [14, Proposition
2.3, p.8].

The next proposition gives the import result of Galois descent for homomorphisms.

Proposition 3.7.3 Let E/F be a finite Galois extension of fields and G := Gal(E/F) be its Galois
group. Then it is equivalent.

1) to give a homomorphism f : V −→ V
′

of F-vector spaces (of algebras over F, of central simple
algebras over F, of commutative F-algebras, of commutative F-algebras with unit, · · · ).
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2) to give a homomorphism fE : V×F E −→ V
′ ⊗F E of E-vector spaces (of algebras over E, of central

simple algebras over E, of commutative E-algebras, of commutative E-algebras with unit,· · · )
which is compatible with the G-operations, i.e., such that for each σ ∈ G the diagram

V ⊗F E V
′ ⊗F E

V ⊗F E V
′ ⊗F E

fE

fE

σ σ

commutes.

Proof. See [14, Proposition 2.7, p.11].

Proposition 3.7.4 (Galois descent for morphisms of schemes) Let E/F be a finite Galois extension of
fields and G := Gal(E/F) be its Galois group. Then it is equivalent.

i) to give a morphism of F-schemes ψ : X −→ X
′
.

ii) to give a morphism of E-schemes ψE : X ×Spec(F) Spec(E) −→ X
′ ×Spec(F) Spec(E) which is

compatible with the G-operations, i.e., such that for each σ ∈ G the diagram

X×Spec(F) Spec(E) X
′ ×Spec(F) Spec(E)

X×Spec(F) Spec(E) X
′ ×Spec(F) Spec(E)

ψE

ψE

σ σ

commutes.

Proof. See [14, Proposition 2.8, p.12].

Remark 3.7.2 Note that there is a Galois descent for morphisms of quasi-coherent sheaves, we refer the
reader to [14, Proposition 2.9, p.12].

We conclude this section, by giving the following theorem.

Theorem 3.7.2 (A.Grothendieck and J. Dieudonné) Let E/F be a finite field extension and X be a F-
scheme such that X×Spec(F) Spec(E) is

i) reduced.

ii) irreducible.

iii) compact.

iv) locally of finite type.

v) of finite type.

vi) locally Noetherian.

vii) Noetherian.

viii) proper.

ix) quasi-projective.
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x) projective.
or

xi) regular.

Then X admits the same property.

Proof. See [14, Lemma 2.12, p.14].

3.8 Central simple algebras and non-abelian cohomology

In this section, we will give the relation between Central simple algebras and non-abelian cohomology.

Lemma 3.8.1 (Theorem of Skolem-Noether) Let R be a commutative ring with unit. Then GLn(R)
operates on Mn(R) by conjugation,

(g, m) 7−→ gmg−1.

If R = F is a field then this defines an isomorphism

PGLn(F) := GLn(F)/F∗ −→ AutF

(
Mn(F)

)
.

Proof. See [14, Lemma 3.4, p.34].

Definition 3.8.1 Let n be a natural number.

i) If F is a field then we will denote by AzF
n the set of all isomorphy classes of central simple algebras

A of dimension n2 over F.

ii) Let E/F be a field extension. Then AzE/F
n will denote the set of all isomorphy classes of central sim-

ple algebras A which are of dimension n2 over F and split over E. Obviously, AzF
n :=

⋃
E/F AzE/F

n .

Theorem 3.8.1 Let E/F be a finite Galois extension of fields, G := Gal(E/F) its Galois group and n
be a natural number. Then there is a natural bijection of pointed sets.

a = aE/F
n : AzE/F

n −→ H1(G, PGLn(E))
A 7−→ aA

Proof. See [14, Theorem 3.6, p.20].

Proposition 3.8.1 Let E/F be a finite Galois extension of fields and n be a natural number

1) Let K be a field extension of E such that K/F is Galois again. Then the following diagram of
morphisms of pointed sets commutes,

AzE/F
n H1(Gal(E/F), PGLn(E))

AzK/F
n H1(Gal(K/F), PGLn(K))

aE/F
n

aK/F
n

in f
Gal(K/F)
Gal(E/F)
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2) Let K be an intermediate field of the extension E/F. Then the following diagram of morphisms of
pointed sets commutes,

AzE/F
n H1(Gal(E/F), PGLn(E))

AzE/K
n H1(Gal(E/K), PGLn(E))

aE/F
n

aE/K
n

in f
Gal(E/K)
Gal(E/F)

Proof. See [14, Lemma 3.7, p.21].

Corollary 3.8.1 Let F be a field and n be a natural number. Then there is a unique natural bijection

a = aF
n : AzF

n −→ H1
(
Gal(Fsep/F), PGLn(Fsep)

)
.

such that aF
n|AzE/F

n
= aE/F

n

Proposition 3.8.2 Let F be a field and m and n be natural numbers. Then the diagram

AzF
n H1(Gal(Fsep/F), PGLn(Fsep))

AzF
nm H1(Gal(Fsep/F), PGLn(Fsep))

aF
n

aF
nm

(in
nm)∗A 7→Mm(A)

commutes where (in
nm)∗ is the map induced by the block-diagonal embedding

in
nm : PGLn(Fsep) −→ PGLmn(Fsep)

E 7−→




E 0 · · · 0
0 E · · · 0

· · · · · · . . . · · ·
0 0 · · · E




Proof. See [14, Proposition 3.9, p.22].

Remark 3.8.1 The proposition above shows

Br(F) ≃ lim−→
n

H1(Gal(Fsep/F), PGLn(Fsep)).

3.9 Severi-Brauer varieties

In the final section of this chapter, we arrive at the objects we are most interested in studying; Severi-
Brauer varieties. We focus here especially in the relation between these varieties and central simple
algebras.

Definition 3.9.1 Let F be a field. A scheme X over F is called a Brauer-Severi variety if there exists a
finite, separable field extension E/F such that XE is isomorphic to a projective space Pn

E.
A field extension E of F admitting the property that X ×F E ≃ Pn

E for some n ∈ N is said to be a
splitting field for X. In this case one says X splits over E.
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Notation. XE := X×F E := X×Spec(F) Spec(E).

Remark 3.9.1 Severi-Brauer varieties are twisted forms of projective space.

We now come to the fundamental result about Severi–Brauer varieties.

Proposition 3.9.1 Let X be a Brauer-Severi variety over a field F. Then

1) X is a variety, i.e. a reduced and irreducible scheme.

2) X is projective and regular.

3) X is geometrically integral.

4) One has Γ(X,OX) = F.

5) F is algebraically closed in the function field F(X).

Remark 3.9.2 For 3) Recall that for X be a scheme over the field F. We say X is geometrically integral
over F if the scheme XE is integral for every field extension E of F.

Proof. See [14, Proposition 4.2, p.23].

Theorem 3.9.1 (Châtelet) Let X be a Severi–Brauer variety of dimension n − 1 over the field F. The
following are equivalent :

i) X is isomorphic to projective space Pn−1
F over F.

ii) X is birationally isomorphic to projective space Pn−1
F over F.

iii) X has a F-rational point.

iv) X contains a twisted-linear subvariety|| Y of codimension 1.

Proof. See [10, Theorem 5.1.3, p.115].

Passing to the next paragraph, we will gives the relation between Severi-Brauer varieties and non-abelian
H1.

Severi-Brauer varieties and non-abelian H1

Proposition 3.9.2 Let R be a commutative ring with unit.

1) Then GLn(R) operates on Pn−1
R by morphisms of R-schemes as follows : A ∈ GLn(R) gives rise

to the morphism given by the graded automorphism

Φ : R[T0, · · · , Tn−1] −→ R[T0, . . . , Tn−1]
f (T0, . . . , Tn−1) 7−→ f ((T0, . . . , Tn−1) · At)

of the coordinate ring.

2) If R = E is a field then this induces an isomorphism

PGLn(E) AutE− schemes (P
n−1
E )≃

||We say that a closed subvariety Y −→ X defined over F is a twisted-linear subvariety of X if Y is a Severi-Brauer variety

and moreover over F the inclusion YF ⊆ XF becomes isomorphic to the inclusion of a linear subvariety Pn−1
F

.
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Proof. See [14, Lemma 4.3, p.24].

Definition 3.9.2 Let m be natural number.

i) If F is a field then we will denote by BSF
m the set of all isomorphy classes of Brauer-Severi varieties

X of dimension m over F.

ii) Let E/F be a field extension. Then BSE/F
m will denote the set of all isomorphy classes of Severi-

Brauer varieties X over F which are of dimension m and split over E. Obviously, BSF
m :=⋃

E/F BSE/F
m .

Theorem 3.9.2 Let E/F be a finite Galois extension, G := Gal(E/F) its Galois group and m be a
natural number. Then there exists a natural bijection of pointed sets

β = βE/F
m−1 : BSE/F

m−1 −→ H1(G, PGLm(E))
X 7−→ βX

Proof. See [14, Theorem 4.5, p.25].

Lemma 3.9.1 Let E/F be a finite Galois extension of fields and m be a natural number.

i) Let E
′

be a field extension of E such that E
′
/F is Galois again. Then the following diagram of

morphisms of pointed sets commutes

BSE/F
m−1 H1(Gal(E/F), PGLm(E))

BSE
′
/F

m−1 H1(Gal(E
′
/F), PGLm(E

′
))

βE/F
m−1

in f
Gal(E

′
/F)

Gal(E/F)

βE
′
/F

m−1

ii) Let K be an intermediate field of the extension E/F. Then the following diagram of morphisms of
pointed sets commutes

BSE/F
m−1 H1(Gal(E/F), PGLm(E))

BSE/K
m−1 H1(Gal(E/K), PGLm(E))

βE/F
m−1

in f
Gal(E

′
/F)

Gal(E/F)

βE/K
m−1

×Spec(F)Spec(K)

Proof. See [14, Lemma 4.6, p.26].

Corollary 3.9.1 Let F be a field and m be a natural number. Then there is a natural bijection

β = βE/F
m−1 : BSE/F

m−1 −→ H1(Gal(Fsep/F), PGLm(Fsep))
X 7−→ βX

Proposition 3.9.3 Let m be a natural number. If X is a Severi-Brauer variety of dimension m over a
field F and X(F) ̸= ∅ then, necessarily, X ≃ Pm

F .
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Proof. See [25, Exercises 1 (Châtelet), p. 168].

Proposition 3.9.4 Let E/F be a finite Galois extension of fields, G := Gal(E/F) its Galois group and
m ∈ N. Then H1(G, GLm(E)) = 0.

Proof. See [14, Lemma 4.10, p.27].

Definition 3.9.3 Let F be a field, m a natural number and X be a Brauer-Severi variety of dimension
m. Then a linear subspace of X is a closed subvariety Y ⊆ X such that Y ×Spec(F) Spec(Fsep) ⊆
X×Spec(F) Spec(Fsep) ≃ Pm

Fsep is a linear subspace of the projective space. This property is independent
of the isomorphism chosen.

Theorem 3.9.3 (F. Châtelet, M. Artin) Let F be a field, m and d be natural numbers, X be a Severi-
Brauer variety of dimension m and Y a linear subspace of dimension d. Then the natural bound-
ary maps send the cohomology classes βF

m(X) ∈ H1(Gal(Fsep/F), PGLm+1(Fsep)) and βF
d(Y) ∈

H1
(
Gal(Fsep/F), PGLd+1(Fsep)

)
to one the same class in the cohomological Brauer group H2

(
Gal(Fsep/F), (Fsep

Proof. See [14, Proposition 4.13, p.28].

The next paragraph gives the connection between Central simple algebras and Severi-Brauer varieties.

Central simple algebras and Severi-Brauer varieties

Theorem 3.9.4 Let A a central simple algebra over F of dimension n2

i) Then there exists a Severi-Brauer variety XA of dimension n− 1 over F satisfying

(+) If E/F is a finite Galois extension being a splitting field for A then is a splitting field for XA,
too, and there is one and the same cohomology class

aA = βXA
∈ H1

(
Gal(E/F), PGln(E)

)
.

associated with A and XA.

(+) determines XA uniquely up to isomorphism of F-schemes.

ii) The assignment A −→ XA admits the following properties.

a) It is compatible with extensions E/F of the base field, i.e

XA⊗FE ≃ XA ×Spec(F) Spec(E).

b) E/F is a splitting field for A if and only if E/F is a splitting field for XA.

Proposition 3.9.5 1) Let F be a field and n a natural number. Then X induces a bijection

XF
n : AzF

n −→ BSF
n−1

2) Let E/F be a field extension. Then X induces a bijection

XE/F
n : AzE/F

n −→ BSE/F
n−1
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3) These mappings are compatible with extensions of the base field, i.e., the diagram

AzF
n BSF

n−1

AzE
n BSE

n−1

XF
n

×Spec(F)Spec(E)

XE
n

⊗FE

commutes for every field extension E/F.

Proof. See [14, Corollary 5.3, p.30].

Proposition 3.9.6 Let F be a field, n be a natural number and A a central simple algebra of dimension
n2 over F. Then there is an isomorphism

xA : AutF(A) −→ AutF−schemes(XA).

Proof. See [14, Proposition 5.5, p.30].

Theorem 3.9.5 Let F be a field, n and d be natural numbers, and A be a central simple algebra of
dimension n2 over F. Then the Severi-Brauer variety XA associated with A admits a linear subspace of
dimension d if and only if d ≤ n− 1 and d ≡ −1[ind(A)].

Proof. See [14, Proposition 5.6, p.31].
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