
On central simple algebras
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The main goal of this note is the study of the important properties of central simple alge-

bras.

Simple rings and modules

A ring here is assumed to be associative with a unity, but not necessarily commutative and

modules will be assumed to be left modules, unless otherwise stated.

Definition 1. Let R be a ring and M be an R-module. We say that M is a simple module if it is

nonzero and the only R-submodules of M are 0 and M. The ring R is called a simple ring if it has no

two-sided ideals but 0 and R.

Examples 2. 1) If k is a field, then the only simple k-modules are the 1-dimensional k-vector

spaces.

2) Take R = Z. Every abelian group of prime order is a simple R-module.

3) If R is a commutative ring, then every simple R-module is isomorphic (as an R-module) to a

quotient ring R/m, where m is a maximal ideal of R.

Definition 3. Let R be a nonzero ring with unit. We say that R is a division ring or a skew field

if every nonzero element x ∈ R has a multiplicative inverse, i.e, there exists x′ ∈ R such that xx′ =

x′x = 1.

Example 4. Let H = {a + bi + cj + dk | a,b,c,d ∈ R}, where i, j and k are indeterminates elements

subject to the following equalities i2 = j2 = k2 = −1. The ring H (with basis (1, i, j,k) and endowed

with the nutural addition and the multiplication defined by linear extension of the above equalities)

is called the ring of quaternions. We show that H is a skew field.
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Notation 1. Let R be a ring and M be an R-module. We will denote the endomorphism ring of M

by EndR(M).

Theorem 5. (Schur’s lemma)

LetM andN be simple R-modules. If f : M −→N is a homomorphism of modules, then either f = 0

or f is an isomorphism. In particular, the ring EndR(M) is a skew field.

Proof. The kernel of f is a submodule of M, so it is either 0 or whole of M. Likewise, the

image of f is a submodule of of N and it must be 0 or whole of N. If f , 0, then ker(f ) = 0 and

im(f ) =N, hence f is an isomorphism. The second assertion follows then by taking N =M.

Theorem 6. If D is a skew filed, then Mn(D) is a simple ring, for every n ∈ N.

Proof. Let Eij be the matrix with (i, j)-coefficient is equal to 1 and all other coefficients

equal to 0. Let A = (amk)1≤m,k≤n be a nonzero matrix, i.e, there exist i, j ∈ {1, ...,n} such that

aij , 0. As D is a division ring, aij is invertible. One cane easily see that

a−1
ij .EpiAEjp = Epp.

It follwos that the two-sided ideal J generated by the matrix A contains the unit matrix In,

since In = E11 + ...+Enn.Hence J is equal to the ringMn(D),which shows thatMn(D) is a simple

ring.

Theorem 7. (Wedderburn, Rieffel)

Let R be a simple ring and M a nonzero left ideal of R. Then R � EndD(M), where D = EndR(M).

Proof. Let A =EndD(M) and let h : R −→ A be the map defined by h(α)x = αx, for all α ∈ R

and x ∈M.One can easily see that h is a ring homomorphism. As the ring R is simple and h is a

nonzero ring homomorphism, then ker(h) = {0}, i.e, h is injective. To prove the surjectivity of h

we will show that Im(h) is a left ideal of Awhich contains 1A. It is clear that h(1R) = 1A ∈ Im(h),

since h is a ring homomorphism. Let y ∈M and denote by gy the right multiplication by y, i.e,

gy(x) = xy for all x ∈M, Plainly, gy ∈D. Let f ∈ A, we have f (xy) = f (gy(x)) = gy(f (x)) = f (x)y.

It follows that f ◦ h(x)(y) = f (xy) = f (x)y = h(f (x))y, which means, f ◦ h(x) = h(f (x)), for all

x ∈M. If ψ ∈ h(M), i.e, ψ = h(x0) for some x0 ∈M, then for all f ∈ A we have:

f ◦ψ = f ◦ h(x0) = h(f (x0)) ∈ h(M).

that is h(M) is a left ideal of A. Since R is a simple ring, thenMR = R,whereMR coincides here

with the two-sided ideal generated by M. Thus,

h(R) = h(MR) = h(M)h(R)
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Hence Im(h) = h(R) is a left ideal of A. Since it contains the unity element 1A, then it is equal

to A. This shwos that h is surjective.

Definition 8. An algebra A over a commutative ring R is said to be a simple algebra if the ring A is

simple.

Theorem 9. Let K be a field and R a finite-dimentional simple algebra over K. Then there exists a

skew field D such that R �Mn(D).

Proof. Let M be a minimal left ideal of R. In particular, M is a simple R-module. By

Schur’s lemma D =EndR(M) is a skew field and by Theorem 7 we have R �EndD(M). Since M

is finite-dimentional as a vector space over K, then it is finite-dimentional over D. It follows

then that EndD(M) �Mn(D), where n = dimD(M), so R �Mn(D).

Theorem 10. Let D be a division ring and R =Mn(D). Then the following statements hold

1) The ideals

Li =


n∑
j=1

ejiαj | αj ∈D


are minimal left ideals of R. Moreover, R is a finite direct sum of the ideal Li , that is,

Mn(D) = L1 ⊕ ...⊕Ln.

2) All simple modules over R are isomorphic.

3) If M is a nonzero R-module, then M is a direct sum of simple R-modules.

Theorem 11. Let D and ∆ be skew fields. If Mm(D) �Mn(∆), then m = n and D � ∆.

Proof. Let R =Mm(D) and R′ =Mn(∆). As one can see Dm can be considered (in a canonical

way) as a left R-module and ∆n as a left R′-module. Up to identification, one can use Theorem

10(1) to see that Dm is indeed a simple R-module and ∆n is a simple R′-module. Hence, again

by assertion 2 in the same theorem above, we have Dm � ∆n, therefore EndR(Dm) � EndR′ (∆n).

Now, we aim to show that EndR(Dm) � D ( as rings). For this, let ψ : D −→ EndR(Dm) be the

map defined by ψ(δ)(x) = xδ, for all δ ∈ D and x ∈ Dm. One can easily see that ψ is a ring

homomorphism. If δ and γ are elements of D such that ψ(δ) = ψ(γ), then, in particular, δ =

ψ(δ)(1D) = ψ(γ)(1D) = γ. This proves that ψ is injective. For the surjectivity, let f ∈ EndR(Dm).
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It is clear that Dm is a free right D-module. Let {e1, ..., em} be the canonical basis of Dm. Plainly,

there exists δ1, ...,δm ∈D such that

f (e1) = e1δ1 + ...+ emδm.

We have also f (e1) = f (e11e1) = e1δ1. Therefore, for all j ∈ {1, ...,m}, we have

f (ej) = f (ej1e1)

= ej1(f (e1))

= ej1(e1δ1)

= ejδ1.

Consequently, f (ej) = ψ(δ1)(ej). Since the ej describe the elements of a basis of Dm, we get

f = ψ(δ1). Therfore, ψ is surjective. Subsequently,

D � EndR(Dm) � EndR′ (∆
n) � ∆.

Also, from the equality m2 = dimD(R) = dim∆(R′) = n2, we get m = n.

Lemma 12. Let R be a ring. If we consider R as a right R-module, then R is canonically isomorphic

to the ring EndR(R), i.e, R �EndR(R).

Proof. Let ψ : R −→EndR(R) be the map defined by ψ(a) = La for all a ∈ R, where La

is the left multiplication by a, i.e, La(x) = ax for all x ∈ R. It is clear that La ∈ EndR(R) and

that ψ is a ring homomorphism. Let a be any element of R such that La = 0. In particular,

La(1R) = a = 0, that is ψ is injective. Let f ∈EndR(R). Since R is considered as a right R-module,

then f (x) = f (1x) = f (1)x for all x ∈ R, hence f = Lf (1). Consequently, ψ is surjective.

Theorem 13. (Wedderburn)

Let R be a simple ring which has a minimal right ideal M. Then there is a skew field D such that

R �Mn(D).

Proof. SinceR is simple, thenRM = R. Therefore every element ofR is a linear combination

of elements of M. In particular,

1 = a1x1 + ...+ anxn

for some ai ∈ R and xi ∈ M, i ∈ {1, ...,n}. Such a decomposition is not unique, we choose the

shorten one, which means, with a minimal n. Plainly, we have

R = a1M ⊕ ...⊕ anM
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Since M is a simple module, then we have M � aiM for all i ∈ {1, ...,n}. It follows that

R �M ⊕ ...⊕M =Mn

Let D =EndR(M), which is a skew field, then by Lemma 12 we have

R � EndR(R) �EndR(Mn) �Mn(EndR(M)) �Mn(D)

Central simple algebras

Definition 14. Let A be a K-algebra. We say that A is central, if its center is equal to the field K.

i.e, Z(A) = K. To each subset B of A we associate the subalgebra (of A):

ZA(B) = {a ∈ A | ab = ba for all b ∈ B}

which is called the centralizer of B in A.

Examples 15. 1) The quaternion algebra H defined in Example 4(2) is central over R.

2) If K is an arbitrary field, then Mn(K) is central simple over K.

3) Every algebra is central over its center.

Lemma 16. Let B and C be K-algebras, and let A = B⊗K C. Then we have:

1) ZA(B⊗K K) = Z(B)⊗K C.

2) ZA(K ⊗K C) = B⊗K Z(C).

Proof. Let {y1, ..., yn} be a basis of C. Every element w of A can be written as follows:

w = x1 ⊗ y1 + ...+ xn ⊗ yn

where xi are uniquely determined by w. If w ∈ ZA(B⊗K), then (x⊗ 1)w = w(x⊗ 1) for all x ∈ B.

This implies that:

(xx1 − x1x)⊗ y1 + ...+ (xxn − xnx)⊗ yn = 0 f or all x ∈ B.

It follows that xxi = xix for all x ∈ B and i ∈ {1, ...,n}, that is, every xi is an element of Z(B).

Consequently, w ∈ Z(B)⊗C, which shows that ZA(B⊗K) ⊆ Z(B)⊗C. The reverse inclusion is

clear.
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Proposition 17. Let A,B and C as in the Lemma 16. Then we have

Z(A) = Z(B)⊗K Z(C).

In particular, If B and C are central, then A = B⊗K C is also central.

Proof. It is easy to see that Z(A) = ZA(B⊗K)∩ZA(K ⊗C). It follows by Lemma 16 that:

Z(A) = (Z(B)⊗C)∩ (B⊗Z(C)) = Z(B)⊗Z(C).

If B and C are central, then Z(B) = K = Z(C). Therfore, Z(A) = K ⊗K � K, that is, A is central.

Lemma 18. Let B and C be subalgebras of a K-algebra A with C ⊆ ZA(B). Assume that B is central

simple (over K). If x1, ...,xn are linearly independent elements of B and y1, ..., yn ∈ C such that x1y1 +

...+ xnyn = 0, then yi = 0, for all i ∈ {1, ...,n}.

Remark 19. The tensor product of simple algebras is not necessarily simple. For example the R-

algebra C⊗RC is not simple, although C is simple over R.

The following theorem gives a sufficient condition for the simplicity of the tensor product

of two algebras.

Theorem 20. Let B and C be K-algebras. Then the following statements hold.

1) If B is central simple and C is simple, then B⊗K C is simple.

2) If B and C are both central simple, then B⊗K C is central simple.

The Brauer group

Definition 21. Let R be a ring. The opposite of R is defined to be the ring whose elements are the

same elements as in R, with addition law defined to be the addition in R, but with multiplication

performed in the reverse order, i.e, the opposite of (R,+, .) is the ring (R,+,∗) whose multiplication ∗

is defined by x ∗ y = y.x for all x,y ∈ R. This ring will be denoted by Rop.

Remarks 22. The following statements hold.

1) The opposite of the opposite of R is isomorphic to R, i.e, (Rop)op = R.
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2) Rop = R if and only if R is commutative.

3) The right ideals of a ring R are the left ideal of its opposite, and vice versa.

4) A ring R is central (resp., simple; resp., a division ring) if and only if its opposite ring is so.

Theorem 23. If A is an n-dimentional central simple algebra over a filed K, then A⊗KAop �Mn(K).

Proof. Since Mn(K) is isomorphic to EndK (A), it suffices to prove that A⊗Aop � EndK (A).

Let a ∈ A and b ∈ Aop. The map:

ψa,b : A −→ A

x 7−→ axb

is clearly an element of EndK (A). It induces a map

ψ : A⊗K Aop −→ EndK (A)

(a,b) 7−→ ψa,b

Plainly, ψ is bilinear and is also multiplicative since ψac,db(x) = acxdb = ψa,b ◦ ψc,d(x), for all

x ∈ A and (a,b), (c,d) ∈ A⊗KAop. It follows by the universal property of the tensor product that

there is an algebra homomorphism

φ : A⊗K Aop −→ EndK (A).

By the fourth assertion of the last remark and Theorem 20, the algebraA⊗Aop is simple. Hence

φ is injective. Moreover, we have dim(A⊗K Aop) = n2 = EndK (A), so φ is bijective.

We define an equivalence relation on central simple algebras over a field K as indicated in

the following definition.

Definition 24. Let A and B be central simple K-algebras. We say that A and B are similar or Brauer

equivalent and we denote A ∼ B, if there is a division ring D such that A �Mm(D) and B �Mn(D),

for suitable positive integersm,n. Equivalently, they are similar, ifMn(A) �Mn(B), for some positive

integer n.

Notation: One can easily see that the similarity relation defined above, is an equivalence

relation. The similarity class of a central simple algebra A will be denoted simply by [A], and

the set of all Brauer equivalence classes will be denoted by Br(K). In particular, K and Mn(K)

have the same class in Br(K), for all n ∈ N.

Proposition 25. The similarity relation is compatible with the tensor product, i.e, if A,B,A1 and B1

are central simple algebras over a field K with A ∼ B and A1 ∼ B1, then A⊗K A1 ∼ B⊗K B1.
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Proof. Indeed, let D and D1 be division K-algebras such that

A �Mn(D), B �Mm(D), A1 �Mp(D1) and B1 �Ms(D1).

Then, we have

A⊗K A1 �Mn(D)⊗KMp(D1) �Mnp(D ⊗K D1),

B⊗K B1 �Mm(D)⊗KMs(D1) �Mms(D ⊗K D1).

Our result follows from these isomorphisms.

Theorem 26. If K is an arbitrary field, then Br(K) is an abelian group with respect to the law

induced by the tensor product: [A].[B] := [A⊗K B], for any central simple algebras A and B over K.

This group is called the Brauer group of the field K.

Proof. By Proposition 25 this law is well defined. Plainly, for any central simple K-algebra

A, we have A ⊗K K � A, so [K](= [Mn(K)] for any positive integer n) is the identity element

of Br(K). By Therorem 23, the opposed element of [A] in Br(K) is given by the class of its

opposite algebra, that is, −[A] = [Aop]. Also, for any central simple K-algebras C, D, we have

C ⊗K D �D ⊗K C, which shows that Br(K) is an abelian group.

Definition 27. Let A be a central simple K-algebra. The order of [A] in the Brauer group is called

the exponent of A and will be denoted by exp(A).

Example 28. The exponent of the quaternion algebra H defined in Example 4 is 2.

Proposition 29. If A and B are central simple K-algebras, then A � B if and only if A ∼ B and

dimK (A) = dimK (B).

Proof. If A ∼ B, then there is a skew field D such that A �Mm(D) and B �Mn(D) for some

integer m,n. Since A and B have the same dimension, then n = m, hence A �Mn(D) � B. The

reverse is obvious.

Lemma 30. Assume that K is an algebraically closed field and let D be a division algebra over the

field K, Then D = K. That is, the only division algebra over K is K itself.

Proof. Let dimK (D) = m and let α ∈ D. Since the powers 1,α, ...,αm are linearly dependent

over K, α is a root of a monic polynomial f ∈ K[X]. We choose f with minimal degree; let β be

a root of f in K, then f (X) = g(X)(X −β) for some g ∈ K[X]. As the degree of f is minimal, then

g(α) , 0. Since D is a divison algebra, then necessarily α = β (∈ K). This proves that D ⊆ K. The

reverse inclusion is clear.
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Corollary 31. The Brauer group of every algebraically closed field is trivial, i.e, if K is an alge-

braically closed field, then Br(K) = {1} .

Proof. This follows from Lemma 30.

Definition 32. Let A be a K-algebra and ψ an automorphism of A. We say that ψ in an inner

automorphism, if there is an invertible element a of A such that ψ(x) = axa−1 for all x ∈ A.

Theorem 33. (Skolem, Noether)

Let A and B be K-algebras with A central simple and B simple. Let f ,g : B −→ A be two K-algebra

homomorphisms. Then there is an invertible element a ∈ A such that f (b) = ag(b)a−1 for all b ∈ B.

Proof. We first suppose that A =Mn(K), for some n ∈ N. It is clear that Kn can be endowed

with a natural Mn(K)-module and so, by means of the homomorphsim f (resp., g) Kn can also

be seen as a B-module. More explicitly, by means of the action bx = f (b)x for all b ∈ B and

x ∈ Kn (resp., bx = g(b)x for b ∈ B and x ∈ Kn). We denote these B-modules by Vf and Vg

respectively. Since B is simple, it follows by Theorems 9 and 10 that Vf and Vg are isomorphic.

Let ψ : Vf −→ Vg be a B-isomorphism. Hence we have

ψ(f (b)x) = g(b)ψ(x) f or all x ∈ Kn and b ∈ B.

Since ψ is an isomorphism, then f (b) = ψ−1g(b)ψ and ψ is clearly an element of EndK (Kn) �

Mn(K) = A. This shows the result in this case.

For the general case, A⊗K Aop is a matrix algebra by Theorem 23 and the algebra B⊗K Aop is

simple by Theorem 20. We apply the fist part to the maps

f ⊗ id,g ⊗ id : B⊗K Aop −→ A⊗K Aop

There exists an invertible element b ∈ A⊗K Aop such that

(1) f ⊗ id(x⊗ y) = b(g ⊗ id)(x⊗ y)b−1, f or all x ∈ B and y ∈ Aop.

In particular, if we take x = 1 we get 1⊗y = b(1⊗y)b−1 for all y ∈ Aop,which means that, b is an

element of ZA⊗KAop(K ⊗K Aop), hence an element of A⊗K K by the Lemma 16. Thus, b = b′ ⊗ 1

for some b′ ∈ A. Taking y = 1 in (1) we get f (x) = b′g(x)b′−1 for all x ∈ B, which ends the proof.

Corollary 34. Let A be a central simple K-algebra. Then every automorphism of A is an inner

automorphism.
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Proof. Let ψ be an algebra automorphism of A. To show that ψ is an inner automorphism

of A, it suffices to take in the previous theorem B = A, f = id and g = ψ.

Theorem 35. Let A be a central simple K-algebra and let B be a simple K-subalgebra of A. Then its

centralizer C = ZA(B) is also simple. Moreover, we have:

dimK (A) = dimk(B)dimK (C).

Proof. To show that C is simple, we will show that C � EndT (A), where T is the simple K-

algebra B⊗K Aop. Note that the K-algebra A can be viewed as a left T -module for the operation

defined by linearly extending the following equalites:

(β ⊗α)x = βxα, f or all α ∈ Aop, β ∈ B and x ∈ A.

Consider the map ψ : C −→ EndT (A), defined by ψ(c)(x) = cx, for all c ∈ C and x ∈ A. It is easy

to see that ψ is a K-algebra homomrphsim. Let c ∈ Ker(ψ), i.e, ψ(c) is the zero endomorphism.

In particular, we have c = ψ(c)(1) = 0, hence ψ is injective. One can easily see that ψ is also

surjective. Indeed, let f ∈ EndT (A) and let c = f (1), then for every element b ∈ B we have:

cb = (1⊗ b)c = (1⊗ b)f (1) = f ((1⊗ b)1) = f (b).

we have also

bc = (b⊗ 1)c = (b⊗ 1)f (1) = f ((b⊗ 1)1) = f (b).

Consequently, bc = cb, that is, c ∈ C. Moreover, for any x ∈ A, we have

ψ(c)(x) = cx = (1⊗ x)c = (1⊗ x)f (1) = f ((1⊗ x)1) = f (x)

Thus f = ψ(c), which proves that ψ is surjective.

Now, we prove the dimention equality. From Theorem 20, the K-algebra T is simple and by

Theorem 10, there is a unique T -moduleM, up to isomorphism, and every T -module is a finite

direct sum of copies of M. In particular, A �Mn, for some n ∈ N. Let D = EndT (M). As M is a

simple T -module, it follows by Schur’s lemma that D is a division algebra. We proved above

that C � EndT (A). Hence we have

C � EndT (A) � EndT (Mn) �Mn(EndT (M)) =Mn(D).

Therfore, we have

dimK (C) = dimK (Mn(D)) = n2 dimK (D). (1)
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It is clear that M is also a D-module, so by Theorem 10 we have M � Ds, for some s ∈ N. we

also have

T = EndD(M) � EndD(Ds) �Ms(D).

Thus A �Dns, hence

dimK (A) = nsdimK (D). (2)

On the other hand, we have

dimK (A)dimK (B) = dimK (T ) = dimK (Ms(D)) = s2 dimK (D). (3)

From the identities (1), (2) and (3) we get dimK (B)dimK (C) = dimK (A) = nsdimK (D).

Corollary 36. Let A,B and C as in the Theorem 35. Then the following properties hold.

1) ZA(ZA(B)) = B. In particular, we have Z(ZA(B)) = Z(B).

2) If B is central, then A � B⊗K C.

Proof. Clearly we have B ⊆ ZA(ZA(B)). For the reverse inclusion, take C′ = ZA(C). By

Theorem 35 C is a simple algebra and we have : dimK (C)dimK (C′) = dimK (A).

dimK (C) = dimK (A)
dimK (B)

So, dimK (B) = dimK (C′) = dimK (ZA(ZA(B))). This proves the reverse inclusion. It follows then

that

Z(ZA(B)) = ZA(ZA(B))∩ZA(B) = B∩ZA(B) = Z(B).

Assume that B is central and let φ : B ⊗K C −→ A be the K-algebra homomorphism defined

by φ(b ⊗ c) = bc, for all b ∈ B and c ∈ C. Since B⊗K C is simple, then φ is injective. It is also

surjective since A and B⊗C have the same dimension.

Central simple algebras under field extensions

In this section, we define the scalar extension of a K-algebra by an arbitrary field extension

of K. We focus especially on the case where the algebra is simple, then we define and study

properties of the reduced norm and trace which are natural generalisations of the classical

norm and trace.
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Definition 37. Let A be a K-algebra and let L be a field extension of K. The L-algebra A ⊗K L is

called the scalar extension of A by L. We will denote it simply by AL.

Remarks 38. Let A and L as in Definition 37. Then we have:

1. dimK (A) = dimL(AL).

2. When A is a central simple K-algebra, then AL is also central simple over L.

Definition 39. Let A be a central simple K-algebra. We say that A is split if A = 1 in Br(K), that is,

A �Mn(K) for some n ∈ N.

Definition 40. LetA be a central simpleK-algebra and let L be a field extension ofK. If the L-algebra

AL is split, then we say that L is a splitting field of A.

An important example of splitting field will be given by the following lemma.

Lemma 41. Let A be a central simple algebra over a field K. Then the algebraic closure K of K is a

splitting field of A. Moreover, the dimension of A over K is a square.

Proof. Extend the K-algebra A to the algebraic closure K. As seen in Remark 38, AK is

simple and by the Wedderburn’s theorem, there is a central divison K-algebra D such that

AK �Mn(D), for some integer n. By Lemma 30, we get D = K, thus AK �Mn(K), that is, A is

split by K . We have also

dimK (A) = dimK (AK ) = dimK (Mn(K) = n2.

Definition 42. Let A be a central simple K-algebra with dimK (A) = n2. The integer n is called the

degree of A and will be denoted by deg(A).

Definition 43. Let A = Mn(D) be a central simple K-algebra, where D is a division central K-

algebra. The degree of D is called the index of A and will be denoted by ind(A).

Definition 44. Let A be a central simple K-algebra. A subfield of A is a subalgebra E of A (over K)

such that E is a field. We say that E is a maximal subfield of A, if there is no other subfield F of A

that contains E. We say that E is a strictly maximal subfield of A if dimKE = deg(A).

Theorem 45. Let A be a central simple K-algebra and L a subfield of A. Let B = ZA(L), then AL ∼ B.

Corollary 46. Let A be a central simple K-algebra of degree n. If L is strictly maximal subfield of A,

then L is a splitting field of A.
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Proof. Since L is assumed to be strictly maximal in A, then by definition [L : K] = n.

Note that A can be seen as a left A-module and also as a right L-module. Consider the map

ψ : A⊗K L −→ EndL(A) �Mn(L) which is defined by

ψ(a⊗λ)(b) = abλ, f or all a,b ∈ A and λ ∈ L.

One can easily see that ψ is an L-algebra homomorphism. As seen in Remark 38(2), the L-

algebra A ⊗K L is simple, hence ψ is injective. ψ is also surjective since dimK (AL) = n3 =

dimK (Mn(L)). Consequently, AL � Mn(L), which means that L is a splitting field of the K-

algebra A.

Definition 47. Let K be a field of characteristic p > 0 and L a field extension of K. An element α ∈ K

is called purely inseparable over K if there is n ∈ N such that αp
n ∈ K. The extension L/K is said to

be purely inseparable if every element of L is purely inseparable over K.

Remarks 48. 1. Purely inseparable extensions are the extreme opposite of separable extensions.

2. Recall that every extension of a field of characteristic zero is separable.

Lemma 49. Let D be a central division K-algebra. Then, there exists d ∈ D\K such that d is

separable over K.

Proof. If char(K) = 0, then we are done. Assume that char(K) = p > 0 and suppose that all

elements of D\K are purely inseparable over K. Take a ∈ D\K with ap
n ∈ K for some integer n,

then consider the K-linear map

f : D −→ D

x 7−→ xa− ax.

By simple computation, one sees that f p
n
(x) = xap

n − apnx = 0 because ap
n ∈ K. As a < K, then

f is not the zero homomorphism, so there is y ∈ D such that f (y) , 0. Therefore, there exists

k ∈ N∗ such that f k(y) = 0 and f k−1(y) , 0. Let x := f k−1(y) and z := f k−2(y). We then have

xa− ax = f (x) = f k(y) = 0, thus xa = ax. We have also f (z) = za− az = x. It follows that au = ua

where u = a−1x. Therefore, au = x = za−az. Since au = ua, then au−1 = u−1a,. Let c = zu−1, then

a = (za− az)u−1 = zu−1a− azu−1 = ca− ac.

Thus, c = 1 + aca−1. Since c is not in K, then by assumption it is purely inseparable over K,
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hence there is m ∈ N such that cp
m ∈ K. Hence we have

cp
m

= (1 + aca−1)p
n

= 1 + (aca−1)p
m

= 1 + acp
n
a−1

= 1 + cp
m
,

which is not true.

The result of the last Lemma assures the existence of a separable splitting field for any central

simple algebra; precisely, we have the following theorem.

Theorem 50. Let D be a central division K-algebra. Then D has a maximal separable subfield. In

particular, every central simple K-algebra has a separable splitting field.

Let A be a central simple K-algebra of degre n and let L be any splitting field of A. Then,

AL �Mn(L). Let φ : AL −→Mn(L) be an aribtrary isomorphism. The characteristic polynomial

of a matrix N ∈Mn(L) is given by:

χ(X,N ) := χL(X,N ) := det(XIn −N ) ∈ L[X].

χ(X,N ) = Xn +αn−1X
n−1 + ...+α0, where α0 = (−1)ndet(N ) and αn−1 = −tr(N ).

Definition 51. Let A,L and φ be as in above. The characteristic polynomial of an element a ∈ AL
(with respect to the representation φ) is is defined by χ(X,a) := χ(X,φ(a)).

Lemma 52. The definition of the characteristic polynomial does not depend of the choice of the

isomorphism φ and the splitting field L.

Proof. Let f : AL −→Mn(L) be an other isomorphism. We have to check that χ(X,φ(a)) =

χ(X,f (a)). By Skolem-Noether theorem, there is an invertible matrix N ∈ Mn(L) such that

φ(a) =Nf (a)N−1. Hence, we have

χ(X,φ(a)) = det(XIn −φ(a))

= det(XIn −Nf (a)N−1)

= det(N (XIn − f (a))N−1)

= det(XIn − f (a))

= χ(X,f (a)).

Remark 53. The K-algebraA can be seen as a sub-K-algebra ofAL via the map x 7−→ x⊗1.Moreover,

if a is an element of A, then χ(X,a) ∈ K[X].
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Definition 54. Let A be a central simple K-algebra of degree n. Let χ(X,a) (∈ K[X]) for an element

a ∈ A, be defined as in above. Write χ(X,a) = xn + αn−1Xn−1 + ... + α0, with αi ∈ K, the element

(−1)nα0 is called the reduced norm of a and will be denoted simply by N (a) or NrdA(a). The reduced

trace of a is defined to be the element −αn−1, and will be denoted by S(a) or T rdA(a).

Remark 55. The bilinear form trace T : A×A −→ K defined by T (a,b) = T rdA(ab) is nondegenerate.

Corollary 56. Let A be a central simple K-algebra of degree n. Then the following statement hold

1) The map S : A −→ K is K-linear and N (ab) =N (a)N (b), for all a,b ∈ A.

2) S(ab) = S(ba), for all a,b ∈ A.

3) S(α) = nα and N (α) = αn, for all α ∈ K .

4) Let a ∈ A, then a is invertible in A if and only if N (a) , 0. In particular, the restriction of N to

U (A) defines a group homomorphism N : U (A) −→ K∗, where U (A) is the group of invertible

elements of A.
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