
NOTE ON SHEAF THEORY

YASSINE AIT MOHAMED

Abstract. In this note, we review some fundamental concepts and constructions in
sheaf theory.

1. Presheaves

Notation. Let X be a topological space. We denote by TX the category having for
objects the open subsets of X and for morphisms identity maps and inclusions.
C will denote a category, which can be the category of sets (also denoted by Set), that
of groups (also denoted by Gp), that of R-modules (also denoted by Ring), that of
R-modules (also denoted by R-Alg), for some ring R.

Definition 1.1. Let X be a topological space. A presheaf F on X consists of the
following deta :

i) For every open subset U of X, a set F(U).
ii) Whenever U ⊆ V are two open subsets of X, a map

resV,U : F(V ) −→ F(U)

called the restriction map, which satisfies the following conditions :
a) resU,U = idF(U).
b) Having three open subsets U ⊆ V ⊆ W of X, then resV,U ◦ resW,V = resW,U

Remarks 1.1. 1) We will mostly write s|U for s when s ∈ F(U). The elements of
F(U) are usually called sections of (the presheaf F) over U .

2) By considering F(U) as object in some category C and assuming that resV,U is
a morphism between the objects F(V ) and F(U), we may define more generally
a presheaf F on X into C.

3) Note that we can state definition 1.1 in another way: Let X be a topological
space. A presheaf F on X (into a category C) is a contravariant functor from
TX into C.

F : TX −→ C
U 7−→ F(U)

Examples 1.1. 1) For a topological space, a presheaf CX of R-algebras on X is
defined by assigning to every open U ⊆ X the set of continuous functions
U −→ R.
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2) Let X be a variety, we previously considered the presheaf of k-algebras OX . For
any open U ⊆ X, OX(U) is the k-algebra of regular functions. If X be an affine
variety we have OX(U) = k[U ].

3) Let X be a topological space, the formula :

U 7−→
{

Z if U = X
{0} otherwise

defines a presheaf of abelian groups on X.

Although it is possible to define a presheaf of a topological space X into an arbitrary
category C, we will be interested in what follows only in cases where the objects of C
are sets (that could have an additional structure) and the morphisms resV,U are maps
(which are morphisms for the extra structure on F(V ) and F(U).

Definition 1.2. Let F be a presheaf on X, a subpresheaf G (of F) is a presheaf on X
such that G(U) ⊆ F(U) for every open U ⊆ X, and such that the restriction maps of G
are induced by those of F .

Example 1.1. If U is an open subset of X, every presheaf F on X induces, in an
obvious way, a presheaf FU on U by setting F|U (V ) = F(V ) for every open subset V of
U . This is the restriction of F to U .

1.1. Morphisms of presheaves.

Definition 1.3. Let F and G be two presheaves on X. A morphism of presheaves ψ
from F to G consists of the datum, for all open U of X, of a morphism ψ(U) from
F(U) to G(U), so that the diagram

F(V ) G(V )

F(U) G(U)

ψ(V )

resV,U resV,U

ψ(U)

commutes for any pair (U, V ) of open subsets of X such that U ⊆ V .

Remarks 1.2. 1) The commutativity of the diagram is written : ψ(V )(s)|U =
ψ(U)(S|U), where s ∈ F(V ).

2) Morphisms of presheaves can be composed. So that presheaves on the topological
space X form a category, that we will denote by PreShX .

3) A morphism ψ : F −→ G between two presheaves F and G is an isomorphism if
it has a two-sided inverse i.e, a morphism ϕ : G −→ F such that ψ ◦ ϕ = idG
and ϕ ◦ ψ = idF .

Definition 1.4. Assume C has direct limits. The stalk of a presheaf F at a point x ∈ X
is

Fx := lim−→
x∈U

F(U)
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The direct limit is taken over open neighborhoods of x, and restriction maps between
them. Given a section s ∈ F(U), and a point x ∈ U , we let sx ∈ Fx denote the image
of s under the natural morphism

F(U) −→ Fx

s 7−→ sx

An element of the stalk is called a germ.
More generally, if Y ⊆ X is a closed and irreducible subset. Then, we set

FY := lim−→
U∩Y ̸=∅

F(U)

Notation. Let X be a topological space and x ∈ X, we denote by V the set of open
neighborhoods of x, which is filtering for the opposite order to inclusion i.e, for all
U, V ∈ V we have

U ≤ V ⇐⇒ V ⊆ U.

Remark 1.1. We can identify Fx as the quotient of the set of pairs (U, s), where U ∈ V
and where s is a section of F on U , by the relation of equivalence defined as follows :
(U, s) ∼ (V, t) if and only if there exists an open neighborhood W of x in U ∩ V such

that s|W = t|W .
Moreover, we can see Fx as the set of sections of F defined in the neighborhood of
x. Two sections belonging to Fx being considered as equal if they coincide in some
neighborhood of x.

Example 1.2. Let F(U) =
{

Continuous functions U −→ R
}
. Then Fx the set of

germs of continuous functions at x.

Proposition 1.1. Let ψ : F −→ G be a morphism of presheaves, then ψ induces for
every point x ∈ X a morphism ψx : Fx −→ Gx between the stalks, where ψx is defined
by ψx(sx) =

(
ψ(U)(s)

)
x

for any open subset U of X, s ∈ F(U), and x ∈ U .

Proof. If s ∈ F(U) and t ∈ F(V ) are such that sx = tx, then there exists an
open neighborhood W of x such that s|W = t|W . So ψ(U)(s)|W = ψ(W )(s|W ) and
ψ(V )(t)|W = ψ(V )(t|W ). Hence

(
ψ(U)(s)

)
x
= (ψ(V )(t))x.

Note that if ψ : F −→ G and ϕ : G −→ Z are two morphisms of sheaves we have
(ψ ◦ ϕ)x = ψx ◦ ϕx and (idF)x = idFx . Moreover, ψ −→ ψx define a functor from the
category of sheaves over X to the category C.

Definition 1.5. Let ψ : F −→ G be a morphism of presheaves
i) We say that ψ is injective if for any open subset U of X, ψ(U) : F(U) −→ G(U)

is injective.
ii) We say that ψ is surjective if for all x ∈ X, ψx : Fx −→ Gx is surjective.

2. Sheaves

Definition 2.1. We say that a presheaf F is a sheaf if we have the following properties:
i) (Uniqueness) Let U be an open subset of X, s ∈ F(U),

{
Ui
}
i∈I a covering of U

by open subsets Ui. If s|Ui
= 0 for every i ∈ I, then s = 0.
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ii) (Gluing axiom) If U =
⋃
i∈I Ui, and if si ∈ F(Ui) is a collection of sections

matching on the overlaps; that is, they satisfy

si|Ui∩Uj
= sj|Ui∩Uj

for all i, j ∈ I, then there exists a section s ∈ F(U) so that s|Ui
= si, for all

i ∈ I

Remarks 2.1. 1) When F is a presheaf of groups or of an algebraic structure that
is in particular a group, we can replace i) by: for all s, t ∈ F(U) such that for
i ∈ I, s|Ui

= t|Ui
then s = t.

2) The section s in ii) is unique by condition i).

Examples 2.1. 1) Let X be a topological space, U 7−→ C0(U,R) is a sheaf of
R-algebras over X.

2) In example 1.1, if moreover, F is a sheaf then F|U is still a sheaf.

2.1. Morphisms of sheaves.

Definition 2.2. A morphism of sheaves is just a morphism of the underlying presheaves.

Remarks 2.2. 1) The sheaves of X form a full subcategory ShX of category of the
presheaves on X.

2) The notions injective, surjective and isomorphism for sheaves are defined in the
same way as for presheaves.

Lemma 2.1. Let X be a topological space and let U be an open subset of X.
1) Let F be a sheaf on X and let s, t ∈ F(U) be two sections such that sx = tx for

every x ∈ U . Then s = t.
2) Let F , G be presheaves on X and let ψ, ϕ : F −→ G be morphisms of presheaves

on X such that Fx = Gx for every x ∈ X. If G is a sheaf, then F = G.

Proof. 1) Let x ∈ U , since sx = tx, there exists an open subset Wx of U containing
x such that s|Wx = t|Wx. Since (Wx)x is an open covering of U , according to
condition i) in definition 2.1, it comes that s = t.

2) Let W be an open subset of X and let s ∈ F(W ). We need to prove that s
has the same image under the maps ψ(W ) and ϕ(W ), let t = ψ(U)(s) and
l = ϕ(U)(s). For all x ∈ W , we have tx = ψx(sx) = ϕx(sx) = lx. Since G is a
sheaf, so by 1) we get that t = l.

Proposition 2.1. Let ψ : F −→ G be a morphism of sheaves. Then ψ is injective if
and only if ψx : Fx −→ Gx is injective for every x ∈ X.

Proof. Suppose ψ is injective. Let x ∈ X and sx ∈ Fx such that ψx(sx) = 0, where
s ∈ F(U) and U is an open neighborhood of x, so

(
ψ(U)(s)

)
x
= 0. Then, there exists an

open neighborhood W of x such that ψ(U)(s)|W = 0 or that ψ(W )(s|W ) = 0. From the
injectivity of ψ it comes that s|W , thus sx = 0. Conversely, suppose that for all x ∈ X,
ψx is injective, we fix an open subset V of X and s ∈ F(V ) such that ψ(V )(s) = 0,
locally we have, for all x ∈ V , ψx(sx) =

(
ψ(U))(s)

)
x
= 0, it comes from local injectivity,

that for all x ∈ V , sx = 0. Hence s = 0.
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Remark 2.1. Proposition 2.1 gives a local characterization of the injectivity.

Theorem 2.1. Let ψ : F −→ G be a morphism of sheaves. The following assertions
are equivalent :

1) ψ is an isomorphism.
2) For every x ∈ X, ψx : Fx −→ Gx is an isomorphism.
3) ψ is both injective and surjective.

Proof. 1) ⇒ 2) Let ϕ be the inverse morphism of ψ. Plainly, for every x ∈ X, we have
ϕx ◦ ψx = idFx and ψx ◦ ϕx = idGx. So ψx is an isomorphism.
2) ⇒ 3) Immediate, according to proposition 2.1 and definition 1.5, 2)
3) ⇒ 1) We will construct the inverse ϕ of ψ. Let W be an open subset of X and t ∈
G(W ), for every x ∈ W , there exists Ux an open neighborhood of x and sx ∈ F(Ux) such
that tx = ψx(s

x
x) =

(
ψ(Ux)(s

x)
)
x
. Hence there exists Vx ⊆ Ux∩W neighborhood of x such

that t|Vx =
(
ψ(Vx)(s

x
|Vx)

)
|Vx

. If y ∈ W , then ψ(Vx ∩ Vy)(sx|Vx∩Vy) = ψ(Vx ∩ Vy)(sy|Vx∩Vy),
so sx|Vx∩Vy = sy|Vx∩Vy , as the family (Vx)x∈U forms a covering of U , then (sx)x rises to a
section s of F on U , and we have ψ(U)(s) = t, the uniqueness of s follows from the
injectivity of ψ. We set ϕ(U)(t) = s, then ϕ is the inverse of ψ.

3. Sheafification

In this section, we answer the following question : How to build a sheaf from a
presheaves?

Definition 3.1. Let F be a presheaf on a topological space X. We call associated sheaf
with F any sheaf F † equipped with a morphism of presheaves β : F −→ F † satisfying
the following universal property:
For any morphism of presheaves ψ : F −→ G, where G is a sheaf, there exists a unique
morphism of sheaves ψ : F † −→ G such that the following diagram is commutative :

F G

F †

ψ

β
ψ

Remark 3.1. The uniqueness of F † when it exists is an immediate consequence of the
universal property.

Proposition 3.1. Let F be a presheaf on a topological space X. Then the sheaf F †

associated with F exists and is a unique up to isomorphism. Moreover, using the above
notation, all x ∈ X, the induced morphism β : Fx −→ F †

x is an isomorphism.

Proof. Let F be a presheaf on X. Consider Z :=
∐

x∈X Fx (disjoint union) and
consider the map π : Z −→ X defined by : for all sx, π(sx) = x. For any open V of
X and s ∈ F(V ), let πs be the map πs : V −→ X defined by πs(x) = sx. Note that
π
(
πs(x)

)
= x i.e π ◦ πs = idU (πs is a section and π is a retraction). We now endow
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Z with the topology which makes all maps πs : V −→ Z, V open subset of X and
s ∈ F(V ), continuous.
For any open subset V of X, we define F †(V ) := {g : V −→ Z/g continuous and π◦g =
idV } it is the set of sections of Z on V .

∗ For every W ⊆ V , the restriction F †(V ) −→ F †(W ) is the usual restriction, i.e
g −→ g|W . In particular F † is a presheaf.

∗ Condition i) in definition 2.1 is immediate.
∗ If (Wj)j is a covering of V and gj ∈ F †(Wj) are such that for all i, j, gi|Wi∩Wj

=
gj|Wi∩Wj

, then as the gj are continuous, and coincide on the intersections, there
exists g : V −→ X which is continuous such that for all j, g|Wj

= gj. Moreover
g is a section in fact : for all x ∈ V , there is some j such that x ∈ Wj,
π ◦ g(x) = π(g(x)) = π(gj(x)) = x.
F †is a sheaf.

∗ Definition of β : F −→ F † : For any open subset V of X and s ∈ F(V ), we
define β(V )(S) := πs ∈ F †(V ).

∗ Compatibility with restrictions : let W ⊆ V two open subsets of X, s ∈ F(V )
and x ∈ W , we have β(V )(s)|W (x) = πs(x) = sx = (s|W )(x) = πs|W (x). So
β(V )(s)|W = β(W )(s|W ).

∗ Let G be a sheaf, and ψ : F −→ G be a morphism of presheaves. We cut a
section g of F †(V ) into small sections (sections of F) on a covering Wj of V ,
then by sending them to the G(Wj), then we stick back into G. Sections of F †

are obtained by gluing sections of F , so Fx = F †
x.

Remark 3.2. If F is a sheaf, it follows from the universal property that F ≃ F †.

Example 3.1. Let A be a group (or a ring, an algebra,. . .), then

U 7−→
{
A if U ̸= ∅
{0} otherwise

is a presheaf and the associated sheaf is called the constant sheaf associated to A. We
denoted by A. For any x ∈ X, we have Ax = A.

4. Subsheaves and Quotient sheaves

Throughout, we fix a category of objects that have an algebraic structure which are
in particular groups, say e.g., C = Gp or R-Mod.

4.1. Subsheaves.

Definition 4.1. Let F and G be two sheaves on X, we say that F is a subsheaf of G,
if for any open subset U of X, F(U) ⊆ G(U) and such that we have compatibility with
the restrictions induced from F and G, i.e., For every open subsets U ⊆ V of X, the
following diagram is commutative:

F(V ) G(V )

F(U) G(U)

resV,UresV,U
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Remark 4.1. F is a subsheaf of G if, the canonical injection ı : F −→ G is a morphism
of sheaves.

Definition 4.2. Let ψ : F −→ G a morphism of presheaves on X. We define the
presheaf ker(ψ) by the formula :

U −→ ker(ψ(U))

for any open subset U of X. ker(ψ) is said to be the kernel of ψ, it’s a subpresheaf of
F . and ψ is injective if and only if its kernel is the trivial presheaf.

Using the notation of Definition 4.2, one can easily see that ψ is injective if and only
if its kernel is the trivial presheaf.

Lemma 4.1. Let ψ : F −→ G be a morphism of sheaves. Then the presheaf ker(ψ) is
a sheaf.

Proof. Let U be an open of X , (Uj)j be a covering of U and sj ∈ ker(ψ(Uj)) such
that for i, j, si|Ui∩Uj

= sj|Ui∩Uj
. Since sj ∈ F(Uj), then (sj)j rises to a section s

of F over U , but for every x ∈ U , there exists i such that x ∈ Uj, and we have(
ψ(U)

)
(s)x =

(
ψ(Uj)

)
(sj)x = 0. So ψ(U)(s) = 0. Hence s ∈ ker(ψ(U)). On the other

hand, if s ∈ ker(ψ(U)) such that for every j, s|Uj
= 0, then s = 0 (because s ∈ F(U)

and F is a sheaf).

Definition 4.3. Let ψ : F −→ G be a morphism of presheaves on X. We define the
im(ψ) presheaf by the formula :

U 7−→ im
(
ψ(U)

)
for any open set U of X. One can easily see that im(ψ) is indeed a subpresheaf of G.
We say that im(ψ) is the image presheaf of ψ.

Remark 4.2. Note that the presheaf im(ψ) is not in general a sheaf. In the same way
we define the presheaf U 7−→ coker − pr(im(ψ)) which too is not in general a sheaf.
This justifies the following definition.

Definition 4.4. Let ψ : F −→ G be a morphism of sheaf. The sheaf associated with
the image presheaf im − pr(ψ) called the image sheaf of ψ is denoted im(ψ). In the
same way we define the cokernel sheaf and that we denote by coker(ψ)
Note that in general

(
im(ψ)

)
(U) ̸= im

(
ψ(U)

)
. The first term is section of the sheaf

im(ψ) on the open set U , while the second is the image of the morphism ψ(U). More
precisely, we have :

Theorem 4.1. Let ψ : F −→ G be a morphism of sheaves. Then, the following
assertions hold :

1) For any open subset U of X, and s ∈ G(U). s ∈ (im(ψ)(U)) if and only if
there exists an open covering (Uj) of U and tj ∈ F(Uj) such that, for any j,
s|Uj

= ψ(Uj)(tj).
2) ψ is surjective if and only if, for any open subset U of X and s ∈ G(U),

there exists an open covering (Uj)j of U and tj ∈ F(Uj) such that, for any j,
s|Uj

= ψ(Uj)(tj).
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3) ψ is surjective if and only if G = im(ψ).

Proof. 1) im(ψ) is a the sheaf associated with presheaf U 7−→ im
(
ψ(U)

)
, hence

the result.
2) If ψ is surjective, let U an open subset of X and s ∈ G(U), for all x ∈ U ,

by theorem 2.1, the map ψx is surjective. So there exists tx ∈ Fx such that
ψx(tx) = sx. Therefore, there there exists an open neighborhood Ux ⊆ U , and
tx ∈ Ux such that s|Ux = ψ(Ux)(t

x). The covering (Ux)x∈U answers the question.
Conversely, let x ∈ X and s ∈ G(U). Let (Uj)j be covering of U and tj ∈ F(Uj)
such that s|Uj

= ψ(Uj)(tj) for all j. Since F is a sheaf then there is t ∈ F(U)
such that t|Uj

= tj for all j. In particular, for every j such that x ∈ Uj,
sx = (s|Uj

)x =
(
ψ(Uj)(tj)

)
x
= ψx(tx). Hence ψ is surjective.

3) Immediate from 1) and 2).

4.2. Quotients sheaves. Assume that F is a subsheaf of the sheaf G. Then we can
define a presheaf whose sections over U are the quotient G(U)/F(U). The restriction
maps of F and G are compatible the inclusions F(U) ⊆ G(U) and hence pass to the
quotient G(U)/F(U). This presheaf, i.e., U 7−→ G(U)/F(U), is called quotient presheaf
of G by F .

Definition 4.5. The quotient sheaf G/F is the sheafification of the quotient presheaf
of G by F .

Proposition 4.1. Let F be a subsheaf of G, x ∈ X. Then (G/F)x = Gx/Fx.

Proof. G/F is the sheaf associated with the presheaf U 7−→ G(U)/F(U) whose stalks
at x is clearly isomorphic to Gx/Fx.

5. Continuous maps and sheaves

5.1. Pushforward.

Definition 5.1. Let f : Y −→ X be a continuous map between topological spaces. Let
F be a presheaf on X. We define the pushforward of F by the formula :

f∗F(V ) = F
(
f−1(V )

)
for any open V ⊆ Y .
Given opens W ⊆ V of Y open the restriction map is given by the commutativity of the
diagram

f∗F(V ) F
(
f−1(V )

)

f∗F(W ) F
(
f−1(W )

)
resf−1(V ),f−1(W )

It is clear that this defines a presheaf on Y .
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Remark 5.1. The construction is clearly functorial in the presheaf F and hence we
obtain a functor

f∗ : PreShX −→ PreShY
F 7−→ f∗F

Proposition 5.1. Let f : X −→ Y be a continuous map and F be a sheaf on X. Then
f∗F is a sheaf on Y .

Proof. This immediately follows from the fact that if (Wj)j is an open covering of
some open subset W of Y then,

⋃
j f

−1(Wj) is an open covering of the open f−1(W ).
Consequently, we obtain a functor

f∗ : ShX −→ ShY
This is compatible with composition in the following strong sense :

Lemma 5.1. Let f : X −→ Y and g : Y −→ Z be continuous maps of topological
spaces. Then, the functors (g ◦ f)∗ and g∗ ◦ f∗ are equal.

Proof. Immediate.

5.2. Pullback. We saw in example 1.1 that if F is a sheaf on X, then for any open
subset U of X F|U is a sheaf on U . Now if we take an arbitrary subset Z of X. the
restriction of F on Z is not necessarily a sheaf because an open set W of Z is not
necessarily an open set of X. Next definition gives the meaning of F|Z , when Z is
a closed subset of X. This will be generalized in Definition 5.3 to give the meaning
of the pullback presheaf defined by a continuous map. For this purpose, note that if
f : X −→ Y is a continuous map between topological spaces and V is an open of Y ,
then the family (U)f(U)⊆V consisting of all open subsets U of X satisfying f(U) ⊆ V ,
is an inductive system for the inverse of the inclusion relation.

Definition 5.2. If ı : Z −→ X is the inclusion of a closed subset Z of X, and V is an
open subset of Z. We define the restriction F|Z as the sheafification of the following
presheaf

V 7−→ lim−→
V⊆U

F(U)

Definition 5.3. Let f : X −→ Y be a continuous map between topological spaces and
G be a presheaf on Y . We define the pullback presheaf of G by the formula :

fpG(U) = lim−→
f(U)⊆V

G(V ).

Remark 5.2. In the language of categories. The pullback presheaf fpG of G is defined
as the left adjoint of the pushforward f∗ on presheaves. In other words, fpG will be a
presheaf on X such that

MorPreShX (fpG,F) =MorPreShY (G, f∗F)

Proposition 5.2. Let f : X −→ Y be a continuous map between topological spaces,
x be a point of X and G be a presheaf on Y. Then, up to an isomorphism, we have
(fpG)x = Gf(x).
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Proof.
(fpG)x = lim−→

x∈U
fpG(U)

= lim−→
x∈U

lim−→
f(U)⊆V

G(V )

= lim−→
f(x)∈V

G(V )

= Gf(x)
Definition 5.4. Let f : X −→ Y be a continuous map between topological spaces and
G be a sheaf on Y . The pullback sheaf f−1G is defined by the formula :

f−1G = (fpG)†

f−1G is also called the inverse image along the map f .

Remark 5.3. f−1 defines a functor :

f−1 : ShY −→ ShX
G 7−→ f−1G

The pullback f−1 is a left adjoint of pushforward on sheaves.

MorShX (f
−1G,F) =MorShY (G, f∗F).

Example 5.1. Let F be a sheaf on X and x ∈ X. Let ı : {x} −→ X be the inclusion
map, then ı−1F = Fx

Lemma 5.2. Let f : X → Y be a continuous map between topological spaces, x ∈ X
and G be a sheaf on Y , then the stalks (f−1G)x and Gf(x) are equals.

Proof. This a combination of proposition 3.1 and proposition 5.2.

Lemma 5.3. Let f : X −→ Y and g : Y −→ Z be continuous maps of topological
spaces. The functors (g ◦ f)−1 and f−1 ◦ g−1 are canonically isomorphic. Similarly,
(g ◦ f)p = fp ◦ gp, for presheaves.

Proof. This follows from the fact that adjoint functors are unique up to unique isomor-
phism, and Lemma 5.1.

6. Exact sequences of sheaves

Definition 6.1. A sequence of presheaves with presheaves morphisms

· · · F j−1 F j F j+1 · · ·ψj−1 ψj ψj+1

is said to be exact if for all i, Im(ψj−1) = ker(ψj). In particular the following exact
sequence is call a short exact sequence when it is exact :

0 F G H 0

Remark 6.1. Let ψ : F −→ G be a morphism of sheaves. Then by,
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i) ψ is injective if and only if

0 F Gψ

is an exact sequence.
ii) ψ is surjective if and only if

F G 0
ψ

is an exact sequence.

Example 6.1. Let X = C, and OX the sheaf of holomorphic functions and consider
the map d : OX −→ OX , sending f(z) to f ′

(z). There is an exact sequence

0 CX OX OX 0d

Indeed,
∗ A function whose derivative vanishes identically is locally constant, so ker(d) is

the constant sheaf CX .
∗ In small open disks any holomorphic function is a derivative.

Lemma 6.1. Let ψ : F −→ G be a morphism of sheaves on X. Then for any x ∈ X,
we have (kerψ)x = ker(ψx) and (imψ)x = im(ψx).

Proof. Let sx ∈
(
ker(ψ)

)
x
, and let U an open neighborhood of x such that s ∈(

ker(ψ)
)
(U) = ker

(
ψ(U)

)
, so ψ(U)(s) = 0, hence ψx(sx) =

(
ψ(U)(s)

)
x
= 0, so sx ∈

ker(ψx). Conversely, if ψx(sx) = 0, then
(
ψ(U)(s)

)
x
= 0 (U is an open neighborhood

of x and s ∈ F(U)), then there exists an open neighborhood W ⊆ U of x such that
ψ(U)(s)|W = 0, it comes while ψ(W )(s|W ) = 0 and therefore s|W ∈ ker

(
ψ(W )

)
whence

sx = (s|V )x ∈
(
ker

(
ψ)

)
x
. One can proceed similarly for the image.

Theorem 6.1. A sequence of sheaves with sheaves morphisms

· · · F j−1 F j F j+1 · · ·ψj−1 ψj ψj+1

is an exact sequence if and only if for any x ∈ X

· · · F j−1
x F j

x F j+1
x · · ·ψj−1

x ψj
x ψj+1

x

is an exact sequence.

Proof.

· · · F j−1 F j F j+1 · · ·ψj−1 ψj ψj+1

is exact sequence if and only if, for any j, im(ψj−1) = ker(ψj) if and only if, for any
x ∈ X and for any j, im(ψj−1

x ) = ker(ψjx) if and only if,

· · · F j−1
x F j

x F j+1
x · · ·ψj−1

x ψj
x ψj+1

x

is exact sequence.
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Proposition 6.1. Let F be a subsheaf of G on X. Then

0 F G G/F 0

is exact sequence.

Proof. By proposition 4.1, for any x ∈ X,

0 Fx Gx Gx/Fx = (G/F)x 0

is exact sequence. Hence the result.

Remark 6.2. If

0 F G H 0

is an exact sequence over X, then F identified with a sub-sheaf of G and G/F ≃ H.

Corollary 6.1. Let ψ : F −→ G be a morphism of sheaves. Then

1) im(ψ) ≃ F/ker(ψ).
2) coker(ψ) ≃ G/im(ψ).

Proof. 1) It is easy to check that for all x ∈ X, we have

0
(
ker(ψ)

)
x

Fx im(ψ)x 0

It follows by theorem 6.1, that

0 ker(ψ) F im(ψ) 0

is an exact sequence. Also by remark 6.2 we have im(ψ) ≃ F/ker(ψ)
2) Similar to 1).

7. Glueing sheaves

In this section, we fix a topological space X, and we consider an open covering{
Ui
}
i∈I of X with a sheaf Fi on each subset Ui. Our goal is to "glue" the Fi together,

that is we search for a global sheaf F such that F|Ui
= Fi for all i ∈ I.

Notation. i) For i, j ∈ I, we denote by Uij the intersection Ui ∩ Uj.
ii) For i, j, k ∈ I, we denote by Uijk the intersection Ui ∩ Uj ∩ Uk.

Definition 7.1. A Gluing Datum consists of a family of sheaves Fi over Ui and a
family of morphisms δij : Fi|Uij

−→ Fj|Uij
such that

i) δii = idFi
.

ii) δji = δ−1
ij .

iii) δik = δjk ◦ δij on Uijk.
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A morphism of gluing datum (Fi, δij) −→ (Gi, ηij) is a family of morphism of sheaves
ψi : Fi −→ Gi such that the following diagram

Fi Gi

Fj Gj

δij

ψi

δij

ψi

is commutative.

Theorem 7.1. (Gluing sheaves) There exists a sheaf F on X, unique up to ismorphism
such that there are isomorphisms θi : FUi

−→ Fi such that there are satisfying

θj = δij ◦ θi.

Proof. Let W be an open subset of X. We write Wi = Ui ∩W , and Wij = Uij ∩W .
We are going to define the sections of F over W by gluing sections of the F ′

is over W ′
is

along the W ′
ijs using the isomorphisms δij. We define

F(W ) :=
{
(si)i∈I |δji(si|Wij

) = δj|Wij
(sj|Wij

)
}
⊆

∏
i∈I

Fi(Wi). (7.1)

The δij’s are morphisms of sheaves and therefore are compatible with all restrictions
maps (see definition 1.3). So if V ⊆ W is another open subset we have

δij(si|Wij
) = sj|Wij

.

Because of this, the defining condition (7.1) is compatible with componentwise restric-
tions, and they can therefore be used as the restriction maps in F . So We have defined
a presheaf on X.

∗ The first step: is to establish the isomorphisms θi : F|Ui
−→ Fi. To avoid getting

confused by the names of the indices, we shall work with a fixed index j ∈ I.
Suppose W ⊆ Uj is an open set. We have W = Wj, and projecting from the
product

∏
i∈I Fi(Wi) onto the component

Fj(W ) = Fj(Wj)

gives us a map θ : Fj|Wj
−→ Fj. Moreover, θ

(
(si)i∈I

)
= sj. The situation is

summarized in the following commutative diagram

F(W )
∏

i∈I Fi(Wi)

Fj(W )

πj
θj

Now, we want to show that θj’s give the desired isomorphisms. We note that on the
restrictions Wjj′ , the requirement in the proposition, that

θj′ = ηj′j ◦ θj
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is fulfilled. This follows directly from the (7.1) that

sj|W
jj

′ = δjj′ (sj′ |W
jj

′ ).

∗ θj is surjective: Let α a section of Fj(W ) over some W ⊆ Uj, and pose
s = (δij(α|Wij

)i∈I . Then s satisfies (7.1) and is an element F(W ). Indeed, by
definition 7.1 iii) we obtain

δki(δij
(
α|Wkij

)
)
= δkj(α|Wkij

).

for each i, k ∈ I, and that is just the condition (7.1). As δjj(α|Wjj
) = α by the

first gluing request, the element s projects to the section α of Fj.
∗ θj is injective : Since sj = 0 if follows that si|Wij

= δij(sj) = 0 for each i ∈ I.
Now Fj is a sheaf, and the

{
Vij

}
i∈I constitute an open covering of Wj, so we

may conclude that s = 0 by definition 2.1 i).
∗ The final step: To show that F is a sheaf. Let

{
Wj

}
j∈I be an open covering of

W ⊆ U , and sj ∈ F(Wj) is a bunch of sections matching on the intersections
Wjj′ . Since F|Ui∩W is a sheaf patch together to give sections si in FUi∩W )

matching on the overlaps Uij ∩W . This last condition means that δij(si) = sj.
By definition (si)i ∈ I, then is a section in F(W ) restricting to si. Hence the
result.
The Gluing axiom (see definition 2.1) is easier : Let s = (si)i∈I in F(W ),
and a covering L =

{
Vj
}
j∈J of W such that s|Vj = 0 for all j ∈ J , then also

s|Vj∩Wi
= 0, and since

{
Vj ∩ Wi

}
j∈J forms a covering of Wi, we must have

s|Wi
= 0 as well, since FWi

= Fi is a sheaf. But from the (7.1) we thus see that
s = 0.
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