Non-homogeneity of Lie and Jordan products in the matrix ring $M_4(k)$ under dihedral group D_{10} grading

Yassine Ait Mohamed

Abstract

In this note, we prove that the Lie and Jordan products of homogeneous elements in a graded ring remain homogeneous only if the grading group is abelian. To illustrate this, we construct an explicit counterexample using the matrix ring $M_4(k)$, graded by the non-abelian dihedral group D_{10} . In this case, the homogeneity of these products is not preserved.

Let *R* be an associative ring with center *Z*(*R*), and let *G* be an abelian group with identity *e*. For $x, y \in R$, the symbol [x, y] (resp. $x \circ y$) denotes the Lie product xy - yx (resp. xy + yx for Jordan product). A ring *R* is *G*-graded if there is a family $\{R_g, g \in G\}$ of additive subgroups R_g of (R, +) such that $R = \bigoplus_{g \in G} R_g$ and $R_g R_h \subseteq R_{gh}$ for every $g, h \in G$. The additive subgroup R_g is called the homogeneous component of *R*, and we denote by $\mathcal{H}(R) = \bigcup_{g \in G} R_g$ the set of homogeneous elements of *R*. A nonzero element $x \in R_g$ is said to be homogeneous of degree *g*, and we write deg(*x*) = *g*. Each element $x \in R$ has a unique decomposition $x = \sum_{g \in G} x_g$ with $x_g \in R_g$ for all $g \in G$, where the sum is finite. The terms x_g are called the homogeneous components of element *x*.

Proposition. If *G* is abelian, the Lie product and Jordan product of homogeneous elements are also homogeneous. More precisely, if $x \in R_g$ and $y \in R_h$, then:

$$[x, y] \in R_{gh}$$
 and $x \circ y \in R_{gh}$

Proof. Straightforward.

In the following example, when *G* is non-abelian, homogeneity is not preserved under Lie and Jordan products.

Example. Let $R = M_4(k)$ (the ring of 4×4 matrices with coefficients in the field k) and $G := D_{10} = \{a, b \mid a^5 = b^2 = e, ba = a^{-1}b\}$. We may define a *G*-grading on *R* by putting

It is straightforward to check that