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Abstract

In this note, we prove that the Lie and Jordan products of homogeneous elements in a
graded ring remain homogeneous only if the grading group is abelian. To illustrate this,
we construct an explicit counterexample using the matrix ring M4(k), graded by the non-
abelian dihedral group D10. In this case, the homogeneity of these products is not pre-
served.

Let R be an associative ring with center Z(R), and let G be an abelian group with identity e. For
x,y ∈ R, the symbol [x,y] (resp. x ◦ y) denotes the Lie product xy − yx (resp. xy + yx for Jordan
product). A ring R is G-graded if there is a family {Rg , g ∈ G} of additive subgroups Rg of (R,+)
such that R =

⊕
g∈GRg and RgRh ⊆ Rgh for every g,h ∈ G. The additive subgroup Rg is called

the homogeneous component of R, and we denote by H(R) =
⋃

g∈GRg the set of homogeneous
elements of R. A nonzero element x ∈ Rg is said to be homogeneous of degree g, and we write
deg(x) = g. Each element x ∈ R has a unique decomposition x =

∑
g∈G xg with xg ∈ Rg for

all g ∈ G, where the sum is finite. The terms xg are called the homogeneous components of
element x.
Proposition. If G is abelian, the Lie product and Jordan product of homogeneous elements are
also homogeneous. More precisely, if x ∈ Rg and y ∈ Rh, then:

[x,y] ∈ Rgh and x ◦ y ∈ Rgh.

Proof. Straightforward.

In the following example, when G is non-abelian, homogeneity is not preserved under Lie
and Jordan products.
Example. Let R = M4(k) (the ring of 4 × 4 matrices with coefficients in the field k) and G :=
D10 = {a,b | a5 = b2 = e,ba = a−1b}. We may define a G-grading on R by putting

Re :=


k 0 0 0
0 k 0 0
0 0 k 0
0 0 0 k

 , Ra :=


0 k 0 0
0 0 k 0
0 0 0 0
0 0 0 0

 , Ra2 :=


0 0 k 0
0 0 0 0
0 0 0 0
0 0 0 0


Ra3 :=


0 0 0 0
0 0 0 0
k 0 0 0
0 0 0 0

 , Rb :=


0 0 0 0
0 0 0 k
0 0 0 0
0 k 0 0

 , Rab :=


0 0 0 k
0 0 0 0
0 0 0 0
k 0 0 0


Ra4b :=


0 0 0 0
0 0 0 0
0 0 0 k
0 0 k 0

 , Ra4 :=


0 0 0 0
k 0 0 0
0 k 0 0
0 0 0 0

 , Ra2b = Ra3b = {0}.
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It is straightforward to check that

[Rb,Ra4] = Rb ◦Ra4 =


0 0 0 0
0 0 0 0
0 0 0 k
k 0 0 0

 1H(R).
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